Hierarchy and fusion 3: Fusions with ILC

Lorenzo Sadun

University of Texas

September 20, 2017

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Lorenzo Sadun Hierarchy and fusion 3: Fusions with ILC

<ロ> <同> <同> < 同> < 同>

э

Outline

- What does ILC look like?
- 2 Topological considerations

Outline

- What does ILC look like?
- 2 Topological considerations
- 3 ILC fusions

Outline

- What does ILC look like?
- 2 Topological considerations
- 3 ILC fusions
- Invariant Measures

伺 と く ヨ と く ヨ と

Outline

- What does ILC look like?
- 2 Topological considerations
- 3 ILC fusions
- Invariant Measures
- 5 Complexity

★ Ξ →

Outline

- What does ILC look like?
- 2 Topological considerations
- 3 ILC fusions
- Invariant Measures
- 5 Complexity
- 6 Tiling with infinitely many sizes

Outline

- What does ILC look like?
- 2 Topological considerations
- 3 ILC fusions
- Invariant Measures
- 5 Complexity
- 6 Tiling with infinitely many sizes
- O Summary

Topological considerations ILC fusions Invariant Measures Complexity Tiling with infinitely many sizes Summary

Table of Contents

- What does ILC look like?
- 2 Topological considerations
- 3 ILC fusions
- Invariant Measures
- 5 Complexity
- 6 Tiling with infinitely many sizes
- Summary

Topological considerations ILC fusions Invariant Measures Complexity Tiling with infinitely many sizes Summary

• Finitely many tile types (prototiles) $\{t_i\}$.

- Finitely many tile types (prototiles) $\{t_i\}$.
- Finitely many ways to have two tiles meet.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- Finitely many tile types (prototiles) $\{t_i\}$.
- Finitely many ways to have two tiles meet.
- Finitely many patches of size r, up to translation.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- Finitely many tile types (prototiles) $\{t_i\}$.
- Finitely many ways to have two tiles meet.
- Finitely many patches of size r, up to translation.
- Excludes many interesting patterns.

Invariant Measures Tiling with infinitely many sizes Summary

Rotational ILC

Lorenzo Sadun

Hierarchy and fusion 3: Fusions with ILC

Topological considerations ILC fusions Invariant Measures Complexity Tiling with infinitely many sizes Summary

Shear ILC

イロン イロン イヨン イヨン

æ

Combinatorial ILC

- Dyadic solenoid. Tiles A_1, \ldots, A_∞ .
- All tiles have length 1.

Combinatorial ILC

- Dyadic solenoid. Tiles A_1, \ldots, A_{∞} .
- All tiles have length 1.
- Put A_1 in every other other slot: ... A_1 A_1 A_1 A_1 A_1 A_1 ...

Combinatorial ILC

- Dyadic solenoid. Tiles A_1, \ldots, A_{∞} .
- All tiles have length 1.
- Put A_1 in every other other slot: ... A_1 A_1 A_1 A_1 A_1 ...
- Put A_2 in every other remaining slot: ... $A_1A_2A_1$ $A_1A_2A_1$ $A_1A_2...$

伺 ト く ヨ ト く ヨ ト

Combinatorial ILC

- Dyadic solenoid. Tiles A_1, \ldots, A_{∞} .
- All tiles have length 1.
- Put A_1 in every other other slot: ... A_1 A_1 A_1 A_1 A_1 ...
- Put A_2 in every other remaining slot: ... $A_1A_2A_1$ $A_1A_2A_1$ $A_1A_2...$
- Put A_3 in every other remaining slot: ... $A_1A_2A_1A_3A_1A_2A_1 \quad A_1A_2...$

Image: A Image: A

Combinatorial ILC

- Dyadic solenoid. Tiles A_1, \ldots, A_{∞} .
- All tiles have length 1.
- Put A_1 in every other other slot: ... A_1 A_1 A_1 A_1 A_1 ...
- Put A_2 in every other remaining slot: ... $A_1A_2A_1$ $A_1A_2A_1$ $A_1A_2...$
- Put A_3 in every other remaining slot: ... $A_1A_2A_1A_3A_1A_2A_1 \quad A_1A_2...$
- Lather, rinse, repeat infinitely many times.

Combinatorial ILC

- Dyadic solenoid. Tiles A_1, \ldots, A_{∞} .
- All tiles have length 1.
- Put A_1 in every other other slot: ... A_1 A_1 A_1 A_1 A_1 A_1 ...
- Put A_2 in every other remaining slot: ... $A_1A_2A_1$ $A_1A_2A_1$ $A_1A_2...$
- Put A_3 in every other remaining slot: ... $A_1A_2A_1A_3A_1A_2A_1 \quad A_1A_2...$
- Lather, rinse, repeat infinitely many times.
- If a slot is still empty, put A_∞ there.

A B > A B >

Topological considerations ILC fusions Invariant Measures Complexity Tiling with infinitely many sizes Summary

• Start with point set associated with FLC tiling.

Lorenzo Sadun Hierarchy and fusion 3: Fusions with ILC

- 4 同 6 4 日 6 4 日 6

Topological considerations ILC fusions Invariant Measures Complexity Tiling with infinitely many sizes Summary

- Start with point set associated with FLC tiling.
- Move each point by a small random amount.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Topological considerations ILC fusions Invariant Measures Complexity Tiling with infinitely many sizes Summary

- Start with point set associated with FLC tiling.
- Move each point by a small random amount.
- Build tiling from new points (e.g. from Voronoi cells).

伺 と く ヨ と く ヨ と

Table of Contents

- What does ILC look like?
- 2 Topological considerations
- ILC fusions
- Invariant Measures
- 5 Complexity
- 6 Tiling with infinitely many sizes
- 7 Summary

Is FLC the same as compactness?

 Usual tiling metric: T and T' are ε-close if T and T' agree on B_{1/ε}, up to rigid ε-translation.

Is FLC the same as compactness?

- Usual tiling metric: T and T' are ε-close if T and T' agree on B_{1/ε}, up to rigid ε-translation.
- In that metric topology, ${\mathcal T}$ has FLC $\Leftrightarrow \Omega_{{\mathcal T}}$ is compact.

Is FLC the same as compactness?

- Usual tiling metric: T and T' are ε-close if T and T' agree on B_{1/ε}, up to rigid ε-translation.
- In that metric topology, \mathcal{T} has FLC $\Leftrightarrow \Omega_{\mathcal{T}}$ is compact.
- Abandon compactness or use different topology?

伺下 イヨト イヨト

Is FLC the same as compactness?

- Usual tiling metric: T and T' are ε-close if T and T' agree on B_{1/ε}, up to rigid ε-translation.
- In that metric topology, \mathcal{T} has FLC $\Leftrightarrow \Omega_{\mathcal{T}}$ is compact.
- Abandon compactness or use different topology?
- Use different topology!

伺 ト イヨト イヨト

Space of tile labels

• In FLC world, {tile labels} is finite.

Lorenzo Sadun Hierarchy and fusion 3: Fusions with ILC

Space of tile labels

- In FLC world, $\{ tile \ labels \}$ is finite.
- In ILC world, {tile labels} is compact.

Space of tile labels

- In FLC world, {tile labels} is finite.
- In ILC world, {tile labels} is compact.
 - For pinwheel, $\{labels\} = O(2)$.

Space of tile labels

- In FLC world, {tile labels} is finite.
- In ILC world, {tile labels} is compact.
 - For pinwheel, $\{labels\} = O(2)$.
 - For dyadic solenoid, $\{\mathsf{labels}\}=1\text{-point}$ compactification of $\mathbb N.$

Space of tile labels

- In FLC world, {tile labels} is finite.
- In ILC world, {tile labels} is compact.
 - For pinwheel, $\{labels\} = O(2)$.
 - For dyadic solenoid, $\{\mathsf{labels}\}=1\text{-point compactification of }\mathbb{N}.$
- Geometry must be compatible: If label_i → label_∞, then (shape of t_i) → (shape of t_∞). (Hausdorff metric)

Topology of ILC tiling spaces

Tilings T and T' are ϵ -close if, on $B_{1/\epsilon}$,

Topology of ILC tiling spaces

Tilings T and T' are ϵ -close if, on $B_{1/\epsilon}$,

• There is a 1–1 correspondence between tiles in T and T',

Topology of ILC tiling spaces

Tilings T and T' are ϵ -close if, on $B_{1/\epsilon}$,

- There is a 1–1 correspondence between tiles in T and T',
- $\bullet\,$ The labels of corresponding tiles are $\epsilon\text{-close,}$ and
- The locations of corresponding tiles are ϵ -close.

Topology of ILC tiling spaces

Tilings T and T' are ϵ -close if, on $B_{1/\epsilon}$,

- There is a 1–1 correspondence between tiles in T and T',
- $\bullet\,$ The labels of corresponding tiles are $\epsilon\text{-close,}$ and
- The locations of corresponding tiles are ϵ -close.
- Can also speak of patches being ϵ -close.

Topology of ILC tiling spaces

Tilings T and T' are ϵ -close if, on $B_{1/\epsilon}$,

- There is a 1–1 correspondence between tiles in T and T',
- $\bullet\,$ The labels of corresponding tiles are $\epsilon\text{-close,}$ and
- The locations of corresponding tiles are ϵ -close.
- Can also speak of patches being ϵ -close.
- In this topology, shears and rotations are continuous.
- In this topology, Ω_T is always compact.

Minimality and Repetitivity

• A dynamical system is *minimal* if every orbit is dense.

・ 同 ト ・ ヨ ト ・ ヨ ト

Minimality and Repetitivity

- A dynamical system is *minimal* if every orbit is dense.
- $T' \in \Omega_T$ iff every patch of T' is approximated arbitrarily well in T.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Minimality and Repetitivity

- A dynamical system is *minimal* if every orbit is dense.
- $T' \in \Omega_T$ iff every patch of T' is approximated arbitrarily well in T.
- For repetitivity, *do not* look at specific patches of diameter *r*. Look at open sets of patches.

Minimality and Repetitivity

- A dynamical system is *minimal* if every orbit is dense.
- $T' \in \Omega_T$ iff every patch of T' is approximated arbitrarily well in T.
- For repetitivity, *do not* look at specific patches of diameter *r*. Look at open sets of patches.
- Def: T is repetitive if, for each U, $\exists R \text{ s.t. every ball of radius } R$ contains at least one patch from U.

Minimality and Repetitivity

- A dynamical system is *minimal* if every orbit is dense.
- $T' \in \Omega_T$ iff every patch of T' is approximated arbitrarily well in T.
- For repetitivity, *do not* look at specific patches of diameter *r*. Look at open sets of patches.
- Def: T is repetitive if, for each U, $\exists R \text{ s.t. every ball of radius } R$ contains at least one patch from U.
- Ω_T is minimal iff T is repetitive.

Table of Contents

- What does ILC look like?
- 2 Topological considerations
- ILC fusions
- Invariant Measures
- 5 Complexity
- 6 Tiling with infinitely many sizes
- Summary

.⊒ . ►

Ingredients

• **Compact** spaces \mathcal{P}_n of *n*-supertiles (n = 0, 1, ...)

(日) (同) (三) (三)

э

Ingredients

- **Compact** spaces \mathcal{P}_n of *n*-supertiles (n = 0, 1, ...)
- For each P_n ∈ P_n, geometric prescription for building P_n out of finitely many elements of P_{n-1}.

Ingredients

- **Compact** spaces \mathcal{P}_n of *n*-supertiles (n = 0, 1, ...)
- For each P_n ∈ P_n, geometric prescription for building P_n out of finitely many elements of P_{n-1}.
- Some geometric constraints on shapes and sizes of supertiles (van Hove)

Ingredients

- **Compact** spaces \mathcal{P}_n of *n*-supertiles (n = 0, 1, ...)
- For each P_n ∈ P_n, geometric prescription for building P_n out of finitely many elements of P_{n-1}.
- Some geometric constraints on shapes and sizes of supertiles (van Hove)
- Weak primitivity: For each open $U_n \subset \mathcal{P}_n$, $\exists N$ s.t. every element of \mathcal{P}_N contains an *n*-supertile from U_n .

Ingredients

- **Compact** spaces \mathcal{P}_n of *n*-supertiles (n = 0, 1, ...)
- For each P_n ∈ P_n, geometric prescription for building P_n out of finitely many elements of P_{n-1}.
- Some geometric constraints on shapes and sizes of supertiles (van Hove)
- Weak primitivity: For each open $U_n \subset \mathcal{P}_n$, $\exists N$ s.t. every element of \mathcal{P}_N contains an *n*-supertile from U_n .
- No strong primitivity! Smaller U_n 's need bigger N's.

・ロト ・同ト ・ヨト ・ヨト

Ingredients

- **Compact** spaces \mathcal{P}_n of *n*-supertiles (n = 0, 1, ...)
- For each P_n ∈ P_n, geometric prescription for building P_n out of finitely many elements of P_{n-1}.
- Some geometric constraints on shapes and sizes of supertiles (van Hove)
- Weak primitivity: For each open $U_n \subset \mathcal{P}_n$, $\exists N$ s.t. every element of \mathcal{P}_N contains an *n*-supertile from U_n .
- No strong primitivity! Smaller U_n 's need bigger N's.
- Weak primitivity implies repetitivity and minimality.

・ロト ・同ト ・ヨト ・ヨト

Dyadic solenoid

• $\mathcal{P}_n \simeq \mathbb{N} \cup \{\infty\}$. All *n*-supertiles A_i^n are intervals of length 2^n .

Dyadic solenoid

• $\mathcal{P}_n \simeq \mathbb{N} \cup \{\infty\}$. All *n*-supertiles A_i^n are intervals of length 2^n . • $A_i^n = A_1^{n-1} A_{i+1}^{n-1}$, $A_{\infty}^n = A_1^{n-1} A_{\infty}^{n-1}$.

э

Dyadic solenoid

• $\mathcal{P}_n \simeq \mathbb{N} \cup \{\infty\}$. All *n*-supertiles A_i^n are intervals of length 2^n .

•
$$A_i^n = A_1^{n-1} A_{i+1}^{n-1}, \qquad A_\infty^n = A_1^{n-1} A_\infty^{n-1}.$$

•
$$A_i^1 = A_1 A_{i+1}$$
,
• $A_i^2 = A_1 A_2 A_1 A_{i+2}$,

•
$$A_{i}^{3} = A_{1}A_{2}A_{1}A_{3}A_{1}A_{2}A_{1}A_{i+3}$$
,

•
$$A_i^4 = A_1 A_2 A_1 A_3 A_1 A_2 A_1 A_4 A_1 A_2 A_1 A_3 A_1 A_2 A_1 A_{i+4}$$
,

Dyadic solenoid

• $\mathcal{P}_n \simeq \mathbb{N} \cup \{\infty\}$. All *n*-supertiles A_i^n are intervals of length 2^n .

•
$$A_i^n = A_1^{n-1} A_{i+1}^{n-1}, \qquad A_\infty^n = A_1^{n-1} A_\infty^{n-1}.$$

•
$$A_i^1 = A_1 A_{i+1}$$
,
• $A_i^2 = A_1 A_2 A_1 A_{i+2}$.

•
$$A_i^{\prime} = A_1 A_2 A_1 A_{i+2}$$
,
• $A_i^{\prime} = A_1 A_2 A_1 A_3 A_1 A_2 A_1 A_{i+3}$,

•
$$A_i^4 = A_1 A_2 A_1 A_3 A_1 A_2 A_1 A_4 A_1 A_2 A_1 A_3 A_1 A_2 A_1 A_{i+4}$$
,

• Rule is the same at all levels. Can view as ILC substitution.

・ 同 ト ・ ヨ ト ・ ヨ ト

Dyadic solenoid

- $\mathcal{P}_n \simeq \mathbb{N} \cup \{\infty\}$. All *n*-supertiles A_i^n are intervals of length 2^n .
- $A_i^n = A_1^{n-1} A_{i+1}^{n-1}, \qquad A_\infty^n = A_1^{n-1} A_\infty^{n-1}.$

•
$$A_{i}^{1} = A_{1}A_{i+1}$$
,

•
$$A_{i_2}^2 = A_1 A_2 A_1 A_{i+2}$$
,

•
$$A_{i}^{3} = A_{1}A_{2}A_{1}A_{3}A_{1}A_{2}A_{1}A_{i+3}$$
,

- $A_i^4 = A_1 A_2 A_1 A_3 A_1 A_2 A_1 A_4 A_1 A_2 A_1 A_3 A_1 A_2 A_1 A_{i+4}$,
- Rule is the same at all levels. Can view as ILC substitution.
- Primitive, since A_iⁿ is contained in all n + i-supertiles, and any nbhd of A_∞ⁿ contains some A_iⁿ.

• A patch P is *literally admissible* if it is found in a supertile.

(日) (同) (三) (三)

Admissibility

- A patch *P* is *literally admissible* if it is found in a supertile.
- *P* is *admissible in the limit* if it is arbitrarily well approximated by literally admissible patches.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Admissibility

- A patch *P* is *literally admissible* if it is found in a supertile.
- *P* is *admissible in the limit* if it is arbitrarily well approximated by literally admissible patches.
- In dyadic solenoid, $A_1A_{\infty} = A_{\infty}^1$ is literally admissible. $A_{\infty}A_1$ is admissible in the limit.

・ 同 ト ・ 三 ト ・

Admissibility

- A patch *P* is *literally admissible* if it is found in a supertile.
- *P* is *admissible in the limit* if it is arbitrarily well approximated by literally admissible patches.
- In dyadic solenoid, $A_1A_{\infty} = A_{\infty}^1$ is literally admissible. $A_{\infty}A_1$ is admissible in the limit.
- Thm: In well-behaved fusions, tilings containing patches that are admissible in the limit have measure zero.

・ 同 ト ・ ラ ト ・

Shear between supertiles

- Near top of *n*-supertile, essentially have $\sigma(a) = ab$, $\sigma(b) = aaa$.
- Near bottom boundary of *n*-supertile, $\sigma(a) = ba$, $\sigma(b) = aaa$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Shear between supertiles

- Near top of *n*-supertile, essentially have $\sigma(a) = ab$, $\sigma(b) = aaa$.
- Near bottom boundary of *n*-supertile, $\sigma(a) = ba$, $\sigma(b) = aaa$.
- Non-Pisot. Discrepancies grow as $\lambda_2^n \to \infty$.

Shear in the limit

В	В		А		А		А
А	А	А		В		В	

- Offsets are multiples of $|b| \pmod{|a|}$.
- Discrepancies grow without bound and |b|/|a| irrational.
- Continuum of offsets appear in the limit.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Transition operators

• $P \in \mathcal{P}_n$, $Q \in \mathcal{P}_N$, $M_{n,N}(P,Q) =$ number of P's in Q.

Lorenzo Sadun Hierarchy and fusion 3: Fusions with ILC

同 ト イ ヨ ト イ ヨ ト

Transition operators

•
$$P \in \mathcal{P}_n$$
, $Q \in \mathcal{P}_N$, $M_{n,N}(P,Q) =$ number of $P's$ in Q .

• Column sum
$$\sum_{P} M_{n,N}(P,Q) = \#(n$$
-supertiles in $Q) < \infty$.

• If
$$n < m < N$$
, $M_{n,N}(P,Q) = \sum_{S \in \mathcal{P}_m} M_{n,m}(P,S) M_{m,N}(S,Q)$.

- 4 回 2 - 4 □ 2 - 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □

э

Three interpretations of $M_{n,N}$

An $n \times m$ matrix is an

• Array of *nm* numbers.

A ►

· < E > < E >

Three interpretations of $M_{n,N}$

An $n \times m$ matrix is an

- Array of *nm* numbers.
- Collection of m (column) vectors in \mathbb{R}^n .

.⊒ . ►

Three interpretations of $M_{n,N}$

An $n \times m$ matrix is an

- Array of *nm* numbers.
- Collection of m (column) vectors in \mathbb{R}^n .
- Linear transformation $\mathbb{R}^m \to \mathbb{R}^n$.

→ Ξ →

Three interpretations of $M_{n,N}$

An $n \times m$ matrix is an

- Array of *nm* numbers.
- Collection of m (column) vectors in \mathbb{R}^n .
- Linear transformation $\mathbb{R}^m \to \mathbb{R}^n$.

Analogously,

• $M_{n,N}(P,Q)$ is a number (#(P's in Q)).

□ > < = > <

Three interpretations of $M_{n,N}$

An $n \times m$ matrix is an

- Array of *nm* numbers.
- Collection of m (column) vectors in \mathbb{R}^n .
- Linear transformation $\mathbb{R}^m \to \mathbb{R}^n$.

Analogously,

- $M_{n,N}(P,Q)$ is a number (#(P's in Q)).
- $M_{n,N}(*, Q)$ is a measure on \mathcal{P}_n .

□ > < = > <

Three interpretations of $M_{n,N}$

An $n \times m$ matrix is an

- Array of *nm* numbers.
- Collection of m (column) vectors in \mathbb{R}^n .
- Linear transformation $\mathbb{R}^m \to \mathbb{R}^n$.

Analogously,

- $M_{n,N}(P,Q)$ is a number (#(P's in Q)).
- $M_{n,N}(*, Q)$ is a measure on \mathcal{P}_n .
- $M_{n,N}$ is a map: (measures on \mathcal{P}_N) \rightarrow (measures on \mathcal{P}_n).

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Table of Contents

- What does ILC look like?
- 2 Topological considerations
- ILC fusions
- Invariant Measures
- 5 Complexity
- 6 Tiling with infinitely many sizes
- 7 Summary

.⊒ . ►

Measures on FLC fusion tiling spaces

- Need positive measure ρ_n on \mathcal{P}_n .
- Volume normalized: $\sum_{P \in \mathcal{P}_n} Vol(P)\rho_n(P) = 1.$

□ > < = > <

Measures on FLC fusion tiling spaces

- Need positive measure ρ_n on \mathcal{P}_n .
- Volume normalized: $\sum_{P \in \mathcal{P}_n} Vol(P)\rho_n(P) = 1.$

• $\rho_n = M_{n,N}\rho_N$ = linear combination of columns of $M_{n,N}$.

伺 ト イヨト イヨト

Measures on FLC fusion tiling spaces

- Need positive measure ρ_n on \mathcal{P}_n .
- Volume normalized: $\sum_{P \in \mathcal{P}_n} Vol(P)\rho_n(P) = 1.$
- $\rho_n = M_{n,N}\rho_N$ = linear combination of columns of $M_{n,N}$.
- $\Delta_{n,N} = ($ projectivized) cone spanned by columns of $M_{n,N}$.
- $\Delta_{n,\infty}$ = possible invariant measures on \mathcal{P}_n .

伺 ト イヨト イヨト

Measures on FLC fusion tiling spaces

- Need positive measure ρ_n on \mathcal{P}_n .
- Volume normalized: $\sum_{P \in \mathcal{P}_n} Vol(P)\rho_n(P) = 1.$
- $\rho_n = M_{n,N}\rho_N$ = linear combination of columns of $M_{n,N}$.
- $\Delta_{n,N} = ($ projectivized) cone spanned by columns of $M_{n,N}$.
- $\Delta_{n,\infty}$ = possible invariant measures on \mathcal{P}_n .

•
$$freq(P) = \lim_{n \to \infty} \sum_{Q \in \mathcal{P}_n} \rho_n(Q) (\#P \in Q)$$

伺 ト イヨト イヨト

Adjustments to ILC spaces

- Still need positive measure ρ_n on \mathcal{P}_n .
- Still volume normalized: $\int_{\mathcal{P}_n} Vol(P)\rho_n(dP) = 1.$
- Need to make sense of:

□ > < = > <

Adjustments to ILC spaces

- Still need positive measure ρ_n on \mathcal{P}_n .
- Still volume normalized: $\int_{\mathcal{P}_n} Vol($

$$\int_{\mathcal{P}_n} \operatorname{Vol}(P) \rho_n(dP) = 1.$$

- Need to make sense of:
 - "Columns" of $M_{n,N}$.

Adjustments to ILC spaces

- Still need positive measure ρ_n on \mathcal{P}_n .
- Still volume normalized: $\int_{\mathcal{P}_n} Vol(P)\rho_n(dP) = 1.$
- Need to make sense of:
 - "Columns" of $M_{n,N}$.
 - Equation $\rho_n = M_{n,N}\rho_N$.

I ≡ →

Adjustments to ILC spaces

- Still need positive measure ρ_n on \mathcal{P}_n .
- Still volume normalized: $\int_{\mathcal{P}_n} Vol(P)\rho_n(dP) = 1.$
- Need to make sense of:
 - "Columns" of $M_{n,N}$.
 - Equation $\rho_n = M_{n,N}\rho_N$.
 - Choquet simplices $\Delta_{n,N}$ and $\Delta_{n,\infty}$.

Adjustments to ILC spaces

- Still need positive measure ρ_n on \mathcal{P}_n .
- Still volume normalized: $\int_{\mathcal{P}_n} Vol(P)\rho_n(dP) = 1.$
- Need to make sense of:
 - "Columns" of $M_{n,N}$.
 - Equation $\rho_n = M_{n,N}\rho_N$.
 - Choquet simplices $\Delta_{n,N}$ and $\Delta_{n,\infty}$.
 - Frequencies of measureable sets of patches.

• Fix $Q \in \mathcal{P}_N$ and measurable $I \in \mathcal{P}_n$.

•
$$\zeta_{n,Q}(I) = \#(I \text{ in } Q) < \infty.$$

- Fix $Q \in \mathcal{P}_N$ and measurable $I \in \mathcal{P}_n$.
- $\zeta_{n,Q}(I) = \#(I \text{ in } Q) < \infty.$
- Not volume normalized: $\int_{\mathcal{P}_n} Vol(P)\zeta_{n,Q}(dP) = Vol(Q).$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

$M_{n,N}$ as a map of measures

• Let ν be a measure on \mathcal{P}_N .

• Define
$$\mu := M_{n,N}(\nu)$$
 by $\mu(I) = \int_{\mathcal{P}_N} \zeta_{n,Q}(I) \nu(dQ)$

• μ is linear combination of $\zeta_{n,Q}$'s with weights given by ν .

• If
$$n < m < N$$
, $M_{n,N}(\nu) = M_{n,m}(M_{m,N}(\nu))$.
• $\int_{\mathcal{P}_n} Vol(P)\mu(dP) = \int_{\mathcal{P}_n \times \mathcal{P}_N} Vol(P)\zeta_{n,Q}(dP)\nu(dQ) = \int_{\mathcal{P}_N} Vol(Q)\nu(dQ)$.

• If ν is volume normalized, then so is μ .

同 ト イ ヨ ト イ ヨ ト

• $\Delta_{n,N}$ is projectivization of range of $M_{n,N}$. Can restrict to volume-normalized measures.

• $\Delta_{n,N}$ is projectivization of range of $M_{n,N}$. Can restrict to volume-normalized measures.

•
$$M_{n,N+1} = M_{n,N} \circ M_{N,N+1}$$
, so $\Delta_{n,N+1} \subset \Delta_{n,N}$.

•
$$\Delta_{n,\infty} = \bigcap_{N>n} \Delta_{n,N}.$$

- $\Delta_{n,N}$ is projectivization of range of $M_{n,N}$. Can restrict to volume-normalized measures.
- $M_{n,N+1} = M_{n,N} \circ M_{N,N+1}$, so $\Delta_{n,N+1} \subset \Delta_{n,N}$.

•
$$\Delta_{n,\infty} = \bigcap_{N>n} \Delta_{n,N}.$$

• Unique ergodicity means $\forall n, \Delta_{n,\infty} = \{\text{point}\}.$

Example: Dyadic Solenoid

• For every
$$Q\in \mathcal{P}_{N}$$
, $M_{0,N}(A_{1},Q)=2^{N-1}=rac{1}{2}$ Vol (Q) .

-

個 と く き と く き と

э

Example: Dyadic Solenoid

• For every
$$Q\in \mathcal{P}_N$$
, $M_{0,N}(A_1,Q)=2^{N-1}=rac{1}{2}$ Vol (Q) .

.

•
$$\forall Q \in \mathcal{P}_N, \zeta_{0,Q}(A_1) = 2^{N-1}$$

-

個 と く き と く き と

э

Example: Dyadic Solenoid

• For every $Q \in \mathcal{P}_N$, $M_{0,N}(A_1, Q) = 2^{N-1} = \frac{1}{2} Vol(Q)$.

•
$$\forall Q \in \mathcal{P}_N, \zeta_{0,Q}(A_1) = 2^{N-1}$$

• Every measure in $\Delta_{0,N}$ gives frequency 1/2 to A_1 . Every measure in $\Delta_{0,N}$ gives frequency $(1/2)^k$ to A_k for all $k \leq N$.

(4) (2) (4)

Example: Dyadic Solenoid

• For every
$$Q\in\mathcal{P}_N$$
, $M_{0,N}(A_1,Q)=2^{N-1}=rac{1}{2}$ Vol (Q) .

•
$$\forall Q \in \mathcal{P}_N, \zeta_{0,Q}(A_1) = 2^{N-1}$$

- Every measure in $\Delta_{0,N}$ gives frequency 1/2 to A_1 . Every measure in $\Delta_{0,N}$ gives frequency $(1/2)^k$ to A_k for all $k \leq N$.
- Every measure in Δ_{0,∞} gives frequency (1/2)^k to A_k and frequency 0 to A_∞.
 Every measure in Δ_{n,∞} gives frequency (1/2)^{n+k} to A_kⁿ and frequency 0 to A_∞ⁿ.

Table of Contents

- What does ILC look like?
- 2 Topological considerations
- 3 ILC fusions
- Invariant Measures

5 Complexity

6 Tiling with infinitely many sizes

7 Summary

.⊒ . ►

For 1-sided sequences on a finite alphabet, usually define:

- c(n) = #(words of length n).
- If c(n) is bounded, all sequences are eventually periodic.
- If c(n) = n + 1, sequence is either eventually periodic or Sturmian.
- For non-periodic substitutions, $k_1 n \leq c(n) \leq k_2 n$.
- Topological entropy is $\limsup \frac{\ln(c(n))}{n}$.

(d, ϵ) -separated sets

- Let X be a metric space with metric d. A (d, ε)-separated set is a set of points, no two of which are within distance ε.
- For 1-sided sequence space, define $d(T_1, T_2) = (\text{first location where } T_1 \neq T_2)^{-1}.$
- c(n) is the maximum cardinality of a 1/n-separated set.
- This depends on choice of metric on sequence space. Want something more robust.

くほし くほし くほし

The d_L metric

• Recall tiling distance: $d(T, T') = \inf_{\epsilon} | T \text{ and } T'$ agree on $B_{1/\epsilon}$ up to rigid translation of up to ϵ .

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

The d_L metric

- Recall tiling distance: $d(T, T') = \inf_{\epsilon} | T \text{ and } T'$ agree on $B_{1/\epsilon}$ up to rigid translation of up to ϵ .
- $d_L(T, T') = \sup_{x \in [0,L]^n} d(T-x, T'-x)$. Two tilings are ϵ -close

if they agree on $[-\epsilon^{-1}, L + \epsilon^{-1}]^n$ up to ϵ changes in each tile.

The d_L metric

- Recall tiling distance: $d(T, T') = \inf_{\epsilon} | T \text{ and } T'$ agree on $B_{1/\epsilon}$ up to rigid translation of up to ϵ .
- $d_L(T, T') = \sup_{x \in [0,L]^n} d(T-x, T'-x)$. Two tilings are ϵ -close

if they agree on $[-\epsilon^{-1}, L + \epsilon^{-1}]^n$ up to ϵ changes in each tile.

• Let $C(\epsilon, L)$ be the maximal size of a (d_L, ϵ) -separated set.

The d_L metric

- Recall tiling distance: $d(T, T') = \inf_{\epsilon} | T \text{ and } T'$ agree on $B_{1/\epsilon}$ up to rigid translation of up to ϵ .
- $d_L(T, T') = \sup_{x \in [0,L]^n} d(T x, T' x)$. Two tilings are ϵ -close

if they agree on $[-\epsilon^{-1}, L + \epsilon^{-1}]^n$ up to ϵ changes in each tile.

- Let $C(\epsilon, L)$ be the maximal size of a (d_L, ϵ) -separated set.
- For suspensions of 1D subshifts, $C(\epsilon, L) \approx \epsilon^{-1} c(L + 2\epsilon^{-1})$.

The d_L metric

- Recall tiling distance: $d(T, T') = \inf_{\epsilon} | T \text{ and } T'$ agree on $B_{1/\epsilon}$ up to rigid translation of up to ϵ .
- $d_L(T, T') = \sup_{x \in [0,L]^n} d(T-x, T'-x)$. Two tilings are ϵ -close

if they agree on $[-\epsilon^{-1}, L + \epsilon^{-1}]^n$ up to ϵ changes in each tile.

- Let $C(\epsilon, L)$ be the maximal size of a (d_L, ϵ) -separated set.
- For suspensions of 1D subshifts, $C(\epsilon, L) \approx \epsilon^{-1}c(L + 2\epsilon^{-1})$.
- Scaling with L does not depend on ϵ or precise definition of d.

- 4 同 ト 4 回 ト -

ILC tiling spaces

• Previous definitions do not require FLC.

- 4 同 6 4 日 6 4 日 6

ILC tiling spaces

- Previous definitions do not require FLC.
- $C(\epsilon, L)$ counts possible patches of size L, up to precision ϵ .
- Interesting questions involve fixing ϵ and taking $L \to \infty$.
 - If C bounded?
 - Is C polynomially bounded? $(C < f(\epsilon)(1+L)^{\gamma})$
 - Entropy = $\limsup_{L \to \infty} \frac{\ln(C(\epsilon, L))}{L^n}$. Has units of 1/Volume.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Invariance under conjugacy and metric change

Thm: Let Ω and Ω' be topologically conjugate tiling spaces with metrics d and d' and tiling complexity functions C and C'. Then for every $\epsilon > 0$ there exists an $\epsilon' > 0$ such that, for every L, $C(\epsilon, L) \leq C'(\epsilon', L)$.

Invariance under conjugacy and metric change

Thm: Let Ω and Ω' be topologically conjugate tiling spaces with metrics d and d' and tiling complexity functions C and C'. Then for every $\epsilon > 0$ there exists an $\epsilon' > 0$ such that, for every L, $C(\epsilon, L) \leq C'(\epsilon', L)$.

- If Ω' has bounded complexity, so does Ω .
- If Ω' has complexity that goes as L^{γ} , so does Ω .
- Entropy of Ω = entropy of Ω .

Invariance under homeomorphism

Thm: [Julien] Similar results apply when Ω and Ω' are merely homeomorphic, up to rescaling *L* by a fixed factor. Specifically,

(4) (2) (4)

Invariance under homeomorphism

Thm: [Julien] Similar results apply when Ω and Ω' are merely homeomorphic, up to rescaling *L* by a fixed factor. Specifically,

- If Ω' has bounded complexity, so does $\Omega.$
- If Ω' has complexity that goes as L^{γ} , so does Ω .
- If Ω' has finite or zero entropy, so does Ω .

Example 1: Pinwheel

To define a patch of size L in the pinwheel tiling, you need to

• Say what sorts of supertiles are involved (finitely many choices).

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Example 1: Pinwheel

To define a patch of size L in the pinwheel tiling, you need to

- Say what sorts of supertiles are involved (finitely many choices).
- Fix the rotations to within ε/L, since rotating by θ moves some points by Lθ. O(L) choices.

Example 1: Pinwheel

To define a patch of size L in the pinwheel tiling, you need to

- Say what sorts of supertiles are involved (finitely many choices).
- Fix the rotations to within ε/L, since rotating by θ moves some points by Lθ. O(L) choices.
- Fix the location of the origin to within ϵ . $O(L^2)$ choices.

< 同 > < 回 > < 回 >

Example 1: Pinwheel

To define a patch of size L in the pinwheel tiling, you need to

- Say what sorts of supertiles are involved (finitely many choices).
- Fix the rotations to within ε/L, since rotating by θ moves some points by Lθ. O(L) choices.
- Fix the location of the origin to within ϵ . $O(L^2)$ choices.
- Total complexity is $O(L^3)$.

< 同 > < 回 > < 回 >

Self-similar tiling with shear but no rotations

If the origin is not within L of the boundary of high-order supertiles, only have $O(L^2)$ possibilities:

- Pick type of supertile that the origin is in. (Bounded choices)
- Specify the location of the origin $(O(L^2)$ possibilities).

Self-similar tiling with shear but no rotations

If the origin is not within L of the boundary of high-order supertiles, only have $O(L^2)$ possibilities:

- Pick type of supertile that the origin is in. (Bounded choices)
- Specify the location of the origin $(O(L^2)$ possibilities).

You need more data when the origin is near a fault line:

- Pick type of supertile that the origin is in. (Bounded choices)
- Specify the location of the origin in that supertile $(O(L^2))$ possibilities).

Self-similar tiling with shear but no rotations

If the origin is not within L of the boundary of high-order supertiles, only have $O(L^2)$ possibilities:

- Pick type of supertile that the origin is in. (Bounded choices)
- Specify the location of the origin $(O(L^2)$ possibilities).

You need more data when the origin is near a fault line:

- Pick type of supertile that the origin is in. (Bounded choices)
- Specify the location of the origin in that supertile $(O(L^2))$ possibilities).
- Specify the offset of the supertile across the fault line (O(L) possibilities).

- 同 ト - ヨ ト - - ヨ ト

Even if basic tiles are unit squares meeting full-edge-to-full-edge,

 Number of ways that 2 supertiles of size ~ L can meet is O(L).

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

DPVs with FLC

Even if basic tiles are unit squares meeting full-edge-to-full-edge,

- Number of ways that 2 supertiles of size ~ L can meet is O(L).
- Complexity goes as L^3 for self-similar. (Slightly different for self-affine).

伺 と く ヨ と く ヨ と

Table of Contents

- What does ILC look like?
- 2 Topological considerations
- 3 ILC fusions
- Invariant Measures
- 5 Complexity
- 6 Tiling with infinitely many sizes

Summary

< ∃ →

Generalized pinwheel

▲ 同 ▶ → ● 三

→ < ∃→

Generalized pinwheel

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Generalized pinwheel

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

э

Properties of generalized pinwheel

• For all but countably many a/b, infinitely many directions.

★ ∃ →

Properties of generalized pinwheel

- For all but countably many a/b, infinitely many directions.
- For all but countably many a/b, infinitely many sizes.

4 3 b

Properties of generalized pinwheel

- For all but countably many a/b, infinitely many directions.
- For all but countably many a/b, infinitely many sizes.
- For all but countably many a/b, continuous shears.

(4) (2) (4)

Properties of generalized pinwheel

- For all but countably many a/b, infinitely many directions.
- For all but countably many a/b, infinitely many sizes.
- For all but countably many a/b, continuous shears.
- That's too complicated for today!
- To see how sizes work, let's do a 1D example instead.

Tiles and supertiles

- Tiling is 1D. Tiles are intervals.
- $\mathcal{P}_0 = [1,3]$. Length of tile $P_0(x)$ is label x.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Tiles and supertiles

- Tiling is 1D. Tiles are intervals.
- $\mathcal{P}_0 = [1,3]$. Length of tile $P_0(x)$ is label x.
- $\mathcal{P}_1 = [3/2, 3] \cup [3, (3/2)]$. In first interval, $P_1(x) = P_0(x)$: single tile of length x. In 2nd interval, $P_1(x) = P_0(x/3)P_0(2x/3)$.

Tiles and supertiles

- Tiling is 1D. Tiles are intervals.
- $\mathcal{P}_0 = [1,3]$. Length of tile $P_0(x)$ is label x.
- $\mathcal{P}_1 = [3/2, 3] \cup [3, (3/2)]$. In first interval, $P_1(x) = P_0(x)$: single tile of length x. In 2nd interval, $P_1(x) = P_0(x/3)P_0(2x/3)$.
- $\mathcal{P}_n = [(3/2)^n, 3(3/2)^n]$ with "special" points $3^a(3/2)^b$ doubled. If $x < 3(3/2)^{n-1}$, $P_n(x) = P_{n-1}(x)$; if $x > 3(3/2)^{n-1}$, $P_n(x) = P_{n-1}(x/3)P_{n-1}(2x/3)$.

Tiles and supertiles

- Tiling is 1D. Tiles are intervals.
- $\mathcal{P}_0 = [1,3]$. Length of tile $P_0(x)$ is label x.
- $\mathcal{P}_1 = [3/2, 3] \cup [3, (3/2)]$. In first interval, $P_1(x) = P_0(x)$: single tile of length x. In 2nd interval, $P_1(x) = P_0(x/3)P_0(2x/3)$.
- $\mathcal{P}_n = [(3/2)^n, 3(3/2)^n]$ with "special" points $3^a(3/2)^b$ doubled. If $x < 3(3/2)^{n-1}$, $P_n(x) = P_{n-1}(x)$; if $x > 3(3/2)^{n-1}$, $P_n(x) = P_{n-1}(x/3)P_{n-1}(2x/3)$.
- $\log(3)/\log(3/2)$ is irrational.

In pictures

Invariant measure

Transition matrix is sufficiently contracting that $\Delta_{n,\infty}$ is a single point. The invariant measure on \mathcal{P}_n is $f_n(x)dx$, where

$$f_n(x) = \begin{cases} rac{c}{x^2} & x < 2(3/2)^n \ rac{3c}{x^2} & x > 2(3/2)^n \end{cases}$$

and $c = 1/\ln(27/4)$. The special points have probability 0.

・ロン ・雪と ・ヨと

Table of Contents

- What does ILC look like?
- 2 Topological considerations
- ILC fusions
- Invariant Measures
- 5 Complexity
- 6 Tiling with infinitely many sizes

< ∃ →

Hierarchy is everywhere

• Atoms, cells, people, planets, galaxies, ...

Lorenzo Sadun Hierarchy and fusion 3: Fusions with ILC

A 10

• = • • = •

Hierarchy is everywhere

- Atoms, cells, people, planets, galaxies, ...
- Strange attractors

同 ト イ ヨ ト イ ヨ ト

Hierarchy is everywhere

- Atoms, cells, people, planets, galaxies, ...
- Strange attractors
- Fractals

伺 と く ヨ と く ヨ と

Hierarchy is everywhere

- Atoms, cells, people, planets, galaxies, ...
- Strange attractors
- Fractals
- And of course tilings!

A 10

I ≡ ▶ < </p>

FLC substitution tilings are wonderful

- Substitution matrix tells you all about measures.
- If substitution is primitive, apply Perron-Frobenius theory.

同 ト イ ヨ ト イ ヨ ト

FLC substitution tilings are wonderful

- Substitution matrix tells you all about measures.
- If substitution is primitive, apply Perron-Frobenius theory.
- Nonperiodicity = Recognizability.

伺 と く ヨ と く ヨ と

FLC substitution tilings are wonderful

- Substitution matrix tells you all about measures.
- If substitution is primitive, apply Perron-Frobenius theory.
- Nonperiodicity = Recognizability.
- All eigenvalues are continuous.

同 ト イ ヨ ト イ ヨ ト

FLC substitution tilings are wonderful

- Substitution matrix tells you all about measures.
- If substitution is primitive, apply Perron-Frobenius theory.
- Nonperiodicity = Recognizability.
- All eigenvalues are continuous.
- Short return vectors: For checking if α is an eigenvalue, just need to see if lim exp(2πiλⁿα · v) = 1 for a finite collection of v's.

- 同 ト - ヨ ト - - ヨ ト

FLC substitution tilings are wonderful

- Substitution matrix tells you all about measures.
- If substitution is primitive, apply Perron-Frobenius theory.
- Nonperiodicity = Recognizability.
- All eigenvalues are continuous.
- Short return vectors: For checking if α is an eigenvalue, just need to see if lim exp(2πiλⁿα · v) = 1 for a finite collection of v's.
- Anderson-Putnam construction.

くほし くほし くほし

FLC substitution tilings are wonderful

- Substitution matrix tells you all about measures.
- If substitution is primitive, apply Perron-Frobenius theory.
- Nonperiodicity = Recognizability.
- All eigenvalues are continuous.
- Short return vectors: For checking if α is an eigenvalue, just need to see if lim exp(2πiλⁿα · v) = 1 for a finite collection of v's.
- Anderson-Putnam construction.
- Collaring.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Fusion is:

• A way of understanding substitutions from the bottom up.

(日) (同) (三) (三)

э

Fusion is:

- A way of understanding substitutions from the bottom up.
- A way of understanding hierarchies that aren't the same at every level.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Fusion is:

- A way of understanding substitutions from the bottom up.
- A way of understanding hierarchies that aren't the same at every level.
- A way of handling hierarchies of ILC tilings

□ > < = > <

Fusion is:

- A way of understanding substitutions from the bottom up.
- A way of understanding hierarchies that aren't the same at every level.
- A way of handling hierarchies of ILC tilings
- So general that you need to apply conditions to get anything useful.

・ 一 ・ ・ ・ ・ ・ ・

Some nice FLC fusions

• Substitutions with non-self-similar tile sizes. (E.g. substitution sequences)

Some nice FLC fusions

- Substitutions with non-self-similar tile sizes. (E.g. substitution sequences)
- DPVs

Lorenzo Sadun Hierarchy and fusion 3: Fusions with ILC

・ 同 ト ・ ヨ ト ・ ヨ ト

Some nice FLC fusions

- Substitutions with non-self-similar tile sizes. (E.g. substitution sequences)
- DPVs
- Combinatorial substitutions and S-adic substitutions

・ 同 ト ・ ヨ ト ・ ヨ ト

Some nice FLC fusions

- Substitutions with non-self-similar tile sizes. (E.g. substitution sequences)
- DPVs
- Combinatorial substitutions and S-adic substitutions
- Method for generating counterexamples:
 - Minimal but not uniquely ergodic 1D example
 - Scrambled Fibonacci. Measurably conjugate to Fibonacci but with no continuous eigenvalues.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

FLC fusion considerations

• Usually need to assume something about primitivity

伺 ト く ヨ ト く ヨ ト

FLC fusion considerations

- Usually need to assume something about primitivity
- Recognizability does not follow from non-periodicity.

A 10

→ Ξ →

FLC fusion considerations

- Usually need to assume something about primitivity
- Recognizability does not follow from non-periodicity.
- Measures controlled by transition matrices. Primitivity by itself does not imply unique ergodicity.

□ > < = > <

FLC fusion considerations

- Usually need to assume something about primitivity
- Recognizability does not follow from non-periodicity.
- Measures controlled by transition matrices. Primitivity by itself does not imply unique ergodicity.
- Spectra controlled by return vectors of *n*-supertiles in same (n+2)-supertile.

FLC fusion considerations

- Usually need to assume something about primitivity
- Recognizability does not follow from non-periodicity.
- Measures controlled by transition matrices. Primitivity by itself does not imply unique ergodicity.
- Spectra controlled by return vectors of *n*-supertiles in same (n+2)-supertile.
- Inverse limit structures are more complicated than Anderson-Putnam.

Some nice ILC fusions

- Tilings with rotations (pinwheel)
- Tilings with shears (many DPVs)
- Tilings with non-expansive dynamics (solenoid)
- Tilings with infinitely many tile shapes/sizes (generalized pinwheel)

/∰ ▶ < ∃ ▶

• Replace finite sets \mathcal{P}_n with compact sets.

<ロト <部ト < 注ト < 注ト

э

Key ideas

- Replace finite sets \mathcal{P}_n with compact sets.
- Adjust topology so patches can approximate one another.

- 4 同 2 4 日 2 4 日 2

Key ideas

- Replace finite sets \mathcal{P}_n with compact sets.
- Adjust topology so patches can approximate one another.
- Admissibility in the limit.
- Measures and repetitivity act on open sets of patches.

▲ □ ▶ ▲ □ ▶ ▲

Key ideas

- Replace finite sets \mathcal{P}_n with compact sets.
- Adjust topology so patches can approximate one another.
- Admissibility in the limit.
- Measures and repetitivity act on open sets of patches.
- Replace transition matrix $(M_{n,N})_{ij}$ with transition operator $M_{n,N}(P,Q)$.
- Transition operators still control invariant measures.

▲ □ ▶ ▲ □ ▶ ▲

Key ideas

- Replace finite sets \mathcal{P}_n with compact sets.
- Adjust topology so patches can approximate one another.
- Admissibility in the limit.
- Measures and repetitivity act on open sets of patches.
- Replace transition matrix $(M_{n,N})_{ij}$ with transition operator $M_{n,N}(P,Q)$.
- Transition operators still control invariant measures.
- Complexity via counting (d_L, ϵ) -separated sets.
- Growth rate of complexity is topological invariant.

A (a) > A (b) > A

Merci pour votre patience!

Lorenzo Sadun Hierarchy and fusion 3: Fusions with ILC

・ 同 ト ・ ヨ ト ・ ヨ ト