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Rules of the game: Review

Finitely many tile types (prototiles) {ti}.
Expansive linear transformation L (usually dilation by λ).

“Substitution rule” for replacing L(ti ) with collection σ(ti ) of
tiles: 1-supertile.

Extend σ to patches, tilings and tiling spaces.

Tiling T is admissible if every patch is found in an n-supertile
σn(ti ). ΩT = {admissible tilings}.
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An alternate approach

Look for admissible T such that σ(T ) = T . “Self-similar”
tiling.

(May need to replace σ by power of σ. σTM has no fixed
point, but σ2TM has four.)

Construct orbit closure ΩT .

Thm: If σ is primitive and non-periodic, Ωσ is minimal, so
Ωσ = ΩT .

In 1-d substitution literature, many authors study T rather
than ΩT .

I’m not one of them. Back to spaces!
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What is an (n+1)-supertile?

σn+1(ti ) = σ(σn(ti )).

To get an (n + 1)-supertile In+1 of type i , start with an
n-supertile In of type i and apply the substitution to each tile
of In.
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The fusion perspective

σn+1(ti ) = σn(σ(ti )).

To get an (n + 1)-supertile In+1, take n-supertiles
{An,Bn, . . .} of various types and assemble them according to
the rule for I1.

Lorenzo Sadun Hierarchy and fusion 2: Fusions with FLC



Two views of substitution
Combinatorial Substitutions

More general fusions
Invariant Measures

Spectra
Scrambled Fibonacci

The fusion perspective

σn+1(ti ) = σn(σ(ti )).

To get an (n + 1)-supertile In+1, take n-supertiles
{An,Bn, . . .} of various types and assemble them according to
the rule for I1.

Lorenzo Sadun Hierarchy and fusion 2: Fusions with FLC



Two views of substitution
Combinatorial Substitutions

More general fusions
Invariant Measures

Spectra
Scrambled Fibonacci

The fusion perspective

σn+1(ti ) = σn(σ(ti )).

To get an (n + 1)-supertile In+1, take n-supertiles
{An,Bn, . . .} of various types and assemble them according to
the rule for I1.

Lorenzo Sadun Hierarchy and fusion 2: Fusions with FLC



Two views of substitution
Combinatorial Substitutions

More general fusions
Invariant Measures

Spectra
Scrambled Fibonacci

Table of Contents

1 Two views of substitution

2 Combinatorial Substitutions

3 More general fusions

4 Invariant Measures

5 Spectra

6 Scrambled Fibonacci

Lorenzo Sadun Hierarchy and fusion 2: Fusions with FLC



Two views of substitution
Combinatorial Substitutions

More general fusions
Invariant Measures

Spectra
Scrambled Fibonacci

A 1D example

Alphabet = {a, b}, σ(a) = ab, σ(b) = aaa.

M =

(
1 3
1 0

)
, eigenvalues (1±

√
13)/2.

PF eigenvectors (2,
√

13− 1),

(
3√

13− 1

)
.

For geometric substitution need |b|/|a| = (
√

13− 1)/2.

For combinatorial substitution can take |a|, |b| arbitrary. (E.g.
|a| = |b| = 1).

σ(word) = concatenation of σ(each letter).

History: Substitution sequences came long before substitution
tilings. For Pisot substitutions, dynamics are the same for
both. For other substitutions, they aren’t.
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A 2D example

A B

B A

A

A A A

A A A

B

Direct product variation (DPV)

For geometric substitution, need (B width/A
width)=(

√
13− 1)/2, A height = B height.

L =
(

(
√
13+1)/2 0

0 2

)
. Tiling does not have FLC.

For combinatorial substitution, can use unit squares.
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Troubles with geometry

A

A

A

A

A

A

A

A A A

A A A

A A A

B

B

B

B

B

B

A A A

Example is not really a substitution!
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Rules for “combinatorial substitutions”

Alphabet of k different prototiles, meeting in finitely many
ways (FLC).

Exactly k n-supertiles, each associated with a prototile.

Geometric prescription (“fusion rule”) for assembling
n-supertiles into (n + 1)-supertiles.

Combinatorics the same at every level.

Tilings are admissible if every patch lies in a supertile.

Ωσ = { all admissible tilings}.
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What stays the same?

Fixed substitution matrix M. Mij = number of n-supertiles of
type i in each (n + 1) supertile of type j .

M controls populations. (Mm)ij counts n-supertiles of type i
in (n + m) supertiles of type j .

If M is primitive, Ωσ is uniquely ergodic and minimal.

Perron-Frobenius theory.

Can write Ωσ as inverse limit.

Can compute cohomology using variants of Anderson-Putnam.
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What’s different?

There is no map σ : Ωσ → Ωσ!

There are no self-similar reference tilings.

Instead, have spaces Ω(n) treating n-supertiles as basic
objects, and maps σn : Ω(n) → Ω(n−1).

Proofs based on substituting or desubstituting indefinitely do
not work.

Invertibility of σn (aka recognizability) is not automatic. Must
assume.

Must make assumptions about shapes of large supertiles (van
Hove sequences).

Spectral theory requires geometric data.
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Revised rules of the game

For each integer n > 0, finitely many n-supertiles meeting in
finitely many ways. (0-supertiles are just tiles.)

Number of n-supertiles can depend on n.

For each n > 0, geometric rule for assembling each n-supertile
from (n − 1)-supertiles.

Transition matrices (Mn,N)ij saying how many In’s are in JN .
Mn,N = Mn,n+1Mn+1,n+2 · · ·MN−1,N .

(Some choices of) Supertiles form van Hove sequence.
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Too much freedom

Every FLC tiling space is obtained from a fusion:

Start with tiling T and space ΩT .

Let n-supertiles be all connected patches of n tiles or fewer.

For each n-supertile, fix decomposition into 1 or 2
n − 1-supertiles.

Hierarchy exists but is meaningless.

To get meaningful results, must apply constraints.
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Other desirable conditions

Recognizability: For each n there is a radius Dn s.t. if two
tilings agree on Br+Dn , then their supertiles of level n agree on
Br .

Non-periodicity. If T = t − x , then x = 0.

Weak primitivity: For each n there is an N s.t. every
N-supertile contains at least one of each n-supertile. (For
each n, ∃N s.t. Mn,N is primitive.)

Strong primitivity: For each n, every (n + 1)-supertile contains
at least one of each n-supertile. (For each n, Mn,n+1 is
primitive.)
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More desirable conditions

Prototile boundedness: The number of n-supertiles is
uniformly bounded.

Prototile regularity: The number of types of n-supertiles is the
same for each n.

Matrix boundedness:
∑
ij

(Mn,n+1)ij is uniformly bounded.

Transition-regularity: Mn,n+1 is the same for every n.
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Acceleration

Pick increasing sequence N1,N2, . . ..

Define new n-supertiles to be old Nn-supertiles.

Can convert prototile boundedness to prototile regularity.

Can convert weak primitivity to strong primitivity.

Sacrifices matrix boundedness.
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Frequencies

Need a way to count occurrences of patch P.

Pick region CP of volume 1 inside of P.

Pick an invariant probability measure µ.

Define cylinder set [P] = {tilings where 0 ∈ CP}.
freqµ(P) := µ([P]).

If µ is ergodic, µ-a.e. T has the property that

lim
r→∞

#(P ∈ Br )

Vol(Br )
= freqµ(P).
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Well-Defined Supertile Frequencies

Define ρn(i) = frequency of n-supertile of type i .

0 ≤ ρn(i).∑
i

ρn(i)Vol(In) = 1.

ρn = Mn,NρN .

Numbers {ρn(i)} form a sequence of well-defined supertile
frequencies.

freq(P) = lim
n→∞

∑
i

#(P ∈ In)ρn(i)
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Measures

Every WDSP gives an invariant measure.

Relative frequencies of n-supertiles in N-supertiles given by
columns of Mn,N .

Convex hull of columns gives simplex ∆n,N ⊂ RPjn−1, where
jn = #(n-supertiles).

∆n,N+1 ⊂ ∆n,N , since Mn,N+1 = Mn,NMN,N+1.

Limiting simplex ∆n,∞ describes all possible n-supertile
frequencies.

Ergodic measures are vertices of simplex.

Lorenzo Sadun Hierarchy and fusion 2: Fusions with FLC



Two views of substitution
Combinatorial Substitutions

More general fusions
Invariant Measures

Spectra
Scrambled Fibonacci

Measures

Every WDSP gives an invariant measure.

Relative frequencies of n-supertiles in N-supertiles given by
columns of Mn,N .

Convex hull of columns gives simplex ∆n,N ⊂ RPjn−1, where
jn = #(n-supertiles).

∆n,N+1 ⊂ ∆n,N , since Mn,N+1 = Mn,NMN,N+1.

Limiting simplex ∆n,∞ describes all possible n-supertile
frequencies.

Ergodic measures are vertices of simplex.

Lorenzo Sadun Hierarchy and fusion 2: Fusions with FLC



Two views of substitution
Combinatorial Substitutions

More general fusions
Invariant Measures

Spectra
Scrambled Fibonacci

Measures

Every WDSP gives an invariant measure.

Relative frequencies of n-supertiles in N-supertiles given by
columns of Mn,N .

Convex hull of columns gives simplex ∆n,N ⊂ RPjn−1, where
jn = #(n-supertiles).

∆n,N+1 ⊂ ∆n,N , since Mn,N+1 = Mn,NMN,N+1.

Limiting simplex ∆n,∞ describes all possible n-supertile
frequencies.

Ergodic measures are vertices of simplex.

Lorenzo Sadun Hierarchy and fusion 2: Fusions with FLC



Two views of substitution
Combinatorial Substitutions

More general fusions
Invariant Measures

Spectra
Scrambled Fibonacci

Measures

Every WDSP gives an invariant measure.

Relative frequencies of n-supertiles in N-supertiles given by
columns of Mn,N .

Convex hull of columns gives simplex ∆n,N ⊂ RPjn−1, where
jn = #(n-supertiles).

∆n,N+1 ⊂ ∆n,N , since Mn,N+1 = Mn,NMN,N+1.

Limiting simplex ∆n,∞ describes all possible n-supertile
frequencies.

Ergodic measures are vertices of simplex.

Lorenzo Sadun Hierarchy and fusion 2: Fusions with FLC



Two views of substitution
Combinatorial Substitutions

More general fusions
Invariant Measures

Spectra
Scrambled Fibonacci

Measures

Every WDSP gives an invariant measure.

Relative frequencies of n-supertiles in N-supertiles given by
columns of Mn,N .

Convex hull of columns gives simplex ∆n,N ⊂ RPjn−1, where
jn = #(n-supertiles).

∆n,N+1 ⊂ ∆n,N , since Mn,N+1 = Mn,NMN,N+1.

Limiting simplex ∆n,∞ describes all possible n-supertile
frequencies.

Ergodic measures are vertices of simplex.

Lorenzo Sadun Hierarchy and fusion 2: Fusions with FLC



Two views of substitution
Combinatorial Substitutions

More general fusions
Invariant Measures

Spectra
Scrambled Fibonacci

Unique ergodicity

If ∆n,∞ = point ∀n, ∃! invariant measure.

Then ergodic theorem applies to every tiling, not just a.e.

All tilings have the same naive patch frequencies.

Warning: Unique ergodicity does not follow from primitivity or
strong primitivity. Need control on transition matrices.
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A primitive 1D fusion tiling with two ergodic measures

Prototile regular: Only two types of n-supertiles.

An = A10n
n−1Bn−1

Bn = An−1B10n
n−1.

Mn−1,n =
(
10n 1
1 10n

)
.

AN has about 90% a’s and 10% b’s
99% A1’s and 1% B1’s
99.9% A2’s and 0.1% B2’s, etc.

BN is the opposite.
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Quantitative control over the Choquet complex

For any matrix X with non-negative entries, let

δ(X ) = min
j

(
mini Xij

maxi Xij

)

Claim: Diam(∆n,N+1)/Diam(∆n,N) ≤ 1− δ(MN,N+1).

Corollary: If
∑
N

δ(MN,N+1) diverges, system is uniquely

ergodic.

In previous example,
∑
N

δ(MN,N+1) ∼
∑

10−N <∞.
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Primitivity Assumptions

Fusion is strongly primitive.

If only weakly primitive, use acceleration to make it strongly
primitive.
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When is ~α a topological eigenvalue?

~α ∈ Rn is top. e-vec iff, exp(2πi~α · ~x) is continuous on
{T − ~x}.

I.e., iff, ∀ε > 0, ∃R s.t., whenever two patches of inner radius
R are separated by displacement ~x , | exp(2πi~α · ~x)− 1| < ε.

To say more, need way to write arbitrary return vector as sum
of standard pieces.
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Short(ish) return vectors

For each n, let
Vn = { displacements for n-supertiles in the same
(n + 2)-supertile.}

Let ηn(~α) = max
~v∈V n

|exp(2πi~α · ~v)− 1| .

Thm: ~α is a topological eigenvalue iff
∑
n

ηn(~α) converges.

For ordinary substitutions, Vn = λVn−1, and either ηn(~α)→ 0
exponentially or ηn(~α) 6→ 0.

For strongly primitive substitution tilings, ~α is an eigenvalue
iff, ∀v ∈ V0, lim

n
exp(2πiλn~α · ~v) = 1.
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For ordinary substitutions, Vn = λVn−1, and either ηn(~α)→ 0
exponentially or ηn(~α) 6→ 0.

For strongly primitive substitution tilings, ~α is an eigenvalue
iff, ∀v ∈ V0, lim

n
exp(2πiλn~α · ~v) = 1.
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Sketch of proof

Lemma: If ~x and ~y are corresponding points in n-supertiles in

the same N-supertile, then ~y − ~x =
N−2∑
k=n

~vk , for some ~vk ∈ Vk .

|exp(2πi~α · y)− exp(2πi~α · x)| ≤
N−2∑
k=n

ηk(~α).

If P is big, P contains an n-supertile, so ∃N s.t.

~y − ~x =
N−2∑
k=n

~vk .

If P is big enough and
∑

ηk converges,

|exp(2πi~α · y)− exp(2πi~α · x)| ≤
∞∑
k=n

ηk(~α) < ε.
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Sketch of the converse

For converse, pick vk ∈ Vk with | exp(2πi~α · ~vk)− 1| = ηk(~α).
(Worse case scenario)

If P lies in an n-supertile, can arrange for for
~y − ~x = vn + vn+3 + vn+6 + · · ·+ vn+3m with m arbitrary.

If
∑

ηk(~α) diverges, no matter how big n is, can arrange for

|exp(2πi~α · y)− exp(2πi~α · x)| > ε.
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Continuous vs. measurable eigenvalues

Recall: If σ is a geometric substitution, then all measurable
eigenvalues are continuous.

Not true for fusions!

Scrambled Fibonacci tiling has pure point measurable
spectrum, but no nonzero continuous eigenvalues.
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Ordinary Fibonacci

1D substitution on two letters. σ(a) = ab, σ(b) = a.

Denote n-supertiles as Fn(a) and Fn(b).

Rewrite as fusion: Fn(a) = Fn−1(a)Fn−1(b), Fn(b) = Fn−1(a).

M0 = ( 1 1
1 0 ), λ = φ = (1 +

√
5)/2.

Pick |a| = φ, |b| = 1. Then |Fn(a)| = φn+1, |Fn(b)| = φn.
|Fn|’s differ from integers by O(φ−n).

Measurable spectrum is pure point:
1√
5
Z[φ].
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Accelerated Fibonacci

Same tiling space as ordinary Fibonacci. Only change is on
the numbering of the levels.

Pick increasing sequence N1,N2, . . . with Nk+1 > Nk + 2.

Choose N’s s.t.
∑
n

φN2n−1−N2n converges.

Also require N2n+1 − 2N2n → +∞.
E.g. can take Nn = 3n.

Define An(a) = FNn(a), An(b) = FNn(b).

Mn,n+1 = M
Nn+1−Nn

0 .
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Scrambled Fibonacci

Tweak accelerated Fibonacci by introducing 3rd supertile type
S2n+1(c) at odd levels.

S2n+1(a) and S2n+1(b) are built from S2n(a) and S2n(b) in
same way that A2n+1’s are built from A2n’s.

S2n+1(c) has same population as S2n+1(b), except all S2n(a)’s
come before any S2n(b)’s. S2n+1(c) have very long periodic
stretches.

S2n(a) and S2n(b) are built from S2n−1(a) and S2n−1(b) in
same way that A2n’s are built from A2n−1’s, except replacing
one S2n−1(b) with S2n−1(c). S2n−1(c)’s are very rare.
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Killing off the topological eigenvalues

Claim: If lim
n

N2n+1 − 2N2n = +∞, then there are no nonzero

topological eigenvalues.

In α 6∈ 1√
5
Z[φ], things get out of phase in the unscrambled

portions.

If α ∈ 1√
5
Z[φ], then | exp(2πiλ|S2n(a)|)− 1| ∼ φ−N2n .

But S2n+1(c) has ∼ φN2n+1−N2n consecutive S2n(a)’s.

Since N2n+1 − N2n � N2n, things get out of phase.
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Keeping the measurable eigenvalues

Claim: If
∑
n

φN2n−1−N2n converges, then ΩSF is topologically

conjugate to ΩFib.

Define map: ΩSF → ΩFib by unscrambling supertiles.

Run into trouble if origin is in an S2n+1(c), but can deal with
finitely many exceptions.

If
∑
n

φN2n−1−N2n converges, then probability that the origin is

in E2n+1(c) for infinitely many n’s is zero. Map is defined
almost everywhere.
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Lagarias’ question (conjecture)

“If a repetitive FLC Delone set has pure point diffraction
spectrum, then does it have to be a model set?”

No! The vertices of scrambled Fibonacci are repetitive FLC,
thanks to primitivity.

The vertices have pure point diffraction spectrum, thanks to
topological conjugacy to Fibonacci.

The vertices do not have the Meyer property, so cannot be a
model set.
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