Hierarchy and fusion 1: Substitutions

Lorenzo Sadun

University of Texas

September 18, 2017

Outline

- Types of matter
- Hierarchy

<ロト < 同ト < 三ト

Outline

- Types of matter
- Hierarchy

2 Examples

Image: A = A

Outline

- Types of matter
- Hierarchy

2 Examples

Substitution tiling spaces

Outline

- Types of matter
- Hierarchy

2 Examples

- Substitution tiling spaces
- Primitivity, Recognizability and Nonperiodicity

Outline

- Types of matter
- Hierarchy
- 2 Examples
- 3 Substitution tiling spaces
- Primitivity, Recognizability and Nonperiodicity
- 5 Measure Theory

Outline

- Types of matter
- Hierarchy
- 2 Examples
- 3 Substitution tiling spaces
- Primitivity, Recognizability and Nonperiodicity
- 5 Measure Theory
- 6 Spectral Theory and Mixing

Examples Substitution tiling spaces Primitivity, Recognizability and Nonperiodicity Measure Theory Spectral Theory and Mixing

Types of matter Hierarchy

Table of Contents

- 1 What is the world made of?
 - Types of matter
 - Hierarchy
- 2 Examples
- 3 Substitution tiling spaces
- Primitivity, Recognizability and Nonperiodicity
- 5 Measure Theory
- 6 Spectral Theory and Mixing

Image: A image: A

Types of matter Hierarchy

Fluids

• Gases and liquids have molecules bouncing around randomly.

<ロ> <同> <同> < 同> < 同>

Types of matter Hierarchy

Fluids

- Gases and liquids have molecules bouncing around randomly.
- You can't specify the behavior of any one molecule, but

(日)

Types of matter Hierarchy

Fluids

- Gases and liquids have molecules bouncing around randomly.
- You can't specify the behavior of any one molecule, but
- Large-scale properties (like pressure) are described by laws of probability.

< □ > < 同 > < 三 >

Types of matter Hierarchy

Crystals

Some solids are crystals. An arrangement of atoms repeats over and over again

< 日 > < 同 > < 三 > < 三 >

Types of matter Hierarchy

Crystals

Some solids are crystals. An arrangement of atoms repeats over and over again

< □ > < 同 > < 三 >

Types of matter Hierarchy

Crystals

Some solids are crystals. An arrangement of atoms repeats over and over again

• Understand one part of the wall and you understand the rest.

< □ > < 同 > < 三 >

Types of matter Hierarchy

Crystals

Some solids are crystals. An arrangement of atoms repeats over and over again

- Understand one part of the wall and you understand the rest.
- Nothing interesting happens at any scale larger than a brick.

Types of matter Hierarchy

Crystals

Some solids are crystals. An arrangement of atoms repeats over and over again

- Understand one part of the wall and you understand the rest.
- Nothing interesting happens at any scale larger than a brick.
- Move the pattern and get the exact same pattern again.

Types of matter Hierarchy

Crystals

Some solids are crystals. An arrangement of atoms repeats over and over again

- Understand one part of the wall and you understand the rest.
- Nothing interesting happens at any scale larger than a brick.
- Move the pattern and get the exact same pattern again.
- We call this behavior "periodic"

Types of matter Hierarchy

Crystals

Some solids are crystals. An arrangement of atoms repeats over and over again

- Understand one part of the wall and you understand the rest.
- Nothing interesting happens at any scale larger than a brick.
- Move the pattern and get the exact same pattern again.
- We call this behavior "periodic" (aka "boring").

Types of matter Hierarchy

Mixtures

• Mixtures usually involve lots of small (but not microscopic) ingredients.

< 日 > < 同 > < 三 > < 三 >

Types of matter Hierarchy

Mixtures

- Mixtures usually involve lots of small (but not microscopic) ingredients.
- Each ingredient might be a crystal, but

<ロト < 同ト < 三ト

ヨート

Types of matter Hierarchy

Mixtures

- Mixtures usually involve lots of small (but not microscopic) ingredients.
- Each ingredient might be a crystal, but
- The arrangement of ingredients is random.

< □ > < 同 > < 回 >

Types of matter Hierarchy

Mixtures

- Mixtures usually involve lots of small (but not microscopic) ingredients.
- Each ingredient might be a crystal, but
- The arrangement of ingredients is random.
- If you understand crystals and fluids, you understand mixtures.

Examples Substitution tiling spaces Primitivity, Recognizability and Nonperiodicity Measure Theory Spectral Theory and Mixing

Types of matter Hierarchy

Everything else

• Look around you!

イロト イポト イヨト イヨト

Types of matter Hierarchy

Everything else

- Look around you!
- Almost everything you see is made up of definite parts.
- Each part is made up of smaller parts.
- Smaller parts are made up of still smaller parts, etc.
- There is interesting structure at many different scales.
- An object with many levels of organization is called hierarchical

Examples Substitution tiling spaces Primitivity, Recognizability and Nonperiodicity Measure Theory Spectral Theory and Mixing

Types of matter Hierarchy

People are made of organs, tissues, and cells

Examples Substitution tiling spaces Primitivity, Recognizability and Nonperiodicity Measure Theory Spectral Theory and Mixing

Types of matter Hierarchy

Cells are made from parts

イロト イポト イヨト イヨト

Examples Substitution tiling spaces Primitivity, Recognizability and Nonperiodicity Measure Theory Spectral Theory and Mixing

Types of matter Hierarchy

Cell parts are made from proteins

Figure : A ribosome is made of proteins

< □ > < 同 > < 回 >

What is the world made of? Examples

Substitution tiling spaces Primitivity, Recognizability and Nonperiodicity Measure Theory Spectral Theory and Mixing

Types of matter Hierarchy

Macromolecules are made from smaller molecules

Lorenzo Sadun Hierarchy and fusion 1: Substitutions

Examples Substitution tiling spaces Primitivity, Recognizability and Nonperiodicity Measure Theory Spectral Theory and Mixing

Types of matter Hierarchy

Molecules are made of atoms

< 日 > < 同 > < 三 > < 三 >

What is the world made of? Examples Substitution tiling spaces

Primitivity, Recognizability and Nonperiodicity

Types of matter Hierarchy

Protons, neutrons and electrons form atoms

Measure Theory Spectral Theory and Mixing

Examples Substitution tiling spaces Primitivity, Recognizability and Nonperiodicity Measure Theory Spectral Theory and Mixing

Types of matter Hierarchy

Atoms form molecules

э

< 日 > < 同 > < 三 > < 三 >

Examples Substitution tiling spaces Primitivity, Recognizability and Nonperiodicity Measure Theory Spectral Theory and Mixing

Types of matter Hierarchy

Macromolecules

Lorenzo Sadun Hierarchy and fusion 1: Substitutions

∃ >

Examples Substitution tiling spaces Primitivity, Recognizability and Nonperiodicity Measure Theory Spectral Theory and Mixing

Types of matter Hierarchy

Cell parts

Figure : A ribosome is made of proteins

(日)

∃ >

Examples Substitution tiling spaces Primitivity, Recognizability and Nonperiodicity Measure Theory Spectral Theory and Mixing

Types of matter Hierarchy

Cells

イロン イロン イヨン イヨン

Examples Substitution tiling spaces Primitivity, Recognizability and Nonperiodicity Measure Theory Spectral Theory and Mixing

Types of matter Hierarchy

Tissues, organs and people

<ロト < 同ト < 三ト

э

∃ >

Examples Substitution tiling spaces Primitivity, Recognizability and Nonperiodicity Measure Theory Spectral Theory and Mixing

Types of matter Hierarchy

Counties, states and countries

(日)

э

- ₹ 🖬 🕨
What is the world made of?

Examples Substitution tiling spaces Primitivity, Recognizability and Nonperiodicity Measure Theory Spectral Theory and Mixing

Types of matter Hierarchy

Where does it end?

Image: A image: A

Table of Contents

- 1 What is the world made of?
 - Types of matter
 - Hierarchy

2 Examples

- 3 Substitution tiling spaces
- Primitivity, Recognizability and Nonperiodicity
- 5 Measure Theory
- 6 Spectral Theory and Mixing

▲ 同 ▶ → 三 ▶

A 1D hierarchical pattern

• One dimensional "tiles" are unit intervals of 2 types: a and b.

A 1D hierarchical pattern

- One dimensional "tiles" are unit intervals of 2 types: a and b.
- Clusters $a_1 = aab$, $b_1 = abb$ of length 3.

A 1D hierarchical pattern

- One dimensional "tiles" are unit intervals of 2 types: a and b.
- Clusters $a_1 = aab$, $b_1 = abb$ of length 3.
- Bigger clusters a₂ = a₁a₁b₁ = aabaababb, b₂ = a₁b₁b₁ = aababbabb of length 9

Image: A = A

A 1D hierarchical pattern

- One dimensional "tiles" are unit intervals of 2 types: a and b.
- Clusters $a_1 = aab$, $b_1 = abb$ of length 3.
- Bigger clusters a₂ = a₁a₁b₁ = aabaababb, b₂ = a₁b₁b₁ = aababbabb of length 9
- Keep on building: $a_{n+1} = a_n a_n b_n$, $b_{n+1} = a_n b_n b_n$.

Image: A image: A

A 1D hierarchical pattern

- One dimensional "tiles" are unit intervals of 2 types: a and b.
- Clusters $a_1 = aab$, $b_1 = abb$ of length 3.
- Bigger clusters a₂ = a₁a₁b₁ = aabaababb, b₂ = a₁b₁b₁ = aababbabb of length 9
- Keep on building: $a_{n+1} = a_n a_n b_n$, $b_{n+1} = a_n b_n b_n$.
- Pattern is "self-similar", with structures of each size resembling those of the previous size. Assembly rule is the same at each stage.

Information in each tile

• Each cluster is of the form *a*(something)*b*.

< 日 > < 同 > < 三 > < 三 >

э

Information in each tile

- Each cluster is of the form *a*(something)*b*.
- An *a* tile preceded by a *b* tile marks beginning of cluster.

Image: A image: A

Information in each tile

- Each cluster is of the form *a*(something)*b*.
- An *a* tile preceded by a *b* tile marks beginning of cluster.
- A b tile followed by a marks end of cluster.

▲ 同 ▶ → 三 ▶

Information in each tile

- Each cluster is of the form *a*(something)*b*.
- An *a* tile preceded by a *b* tile marks beginning of cluster.
- A *b* tile followed by *a* marks end of cluster.
- Label of middle tile marks type of cluster.

▲ 同 ▶ → 三 ▶

Recovering the hierarchy

Recovering the hierarchy

$\dots a_1 a_1 b_1 \dots a_1 b_1 b_1 \dots a_1 b_1 \dots$

Recovering the hierarchy

- $\dots a_1 a_1 b_1 a_1 b_1 b_1 b_1 a_1 b_1 b_1 \dots$
 - \ldots a_2 b_2 b_2 \ldots

Recovering the hierarchy

... aab.aab.abb.aab.abb.abb.aab.abb.abb ...

Hierarchies are never periodic

• If you move the pattern to the side, could you get the exact same thing again?

Image: A = A

Hierarchies are never periodic

- If you move the pattern to the side, could you get the exact same thing again?
- If you move by less than 1, new tiles will overlap old tiles. So must move by at least 1.

Image: A = A

Hierarchies are never periodic

- If you move the pattern to the side, could you get the exact same thing again?
- If you move by less than 1, new tiles will overlap old tiles. So must move by at least 1.
- If you move by less than 3, new clusters will overlap with old clusters. Must move by at least 3.

Hierarchies are never periodic

- If you move the pattern to the side, could you get the exact same thing again?
- If you move by less than 1, new tiles will overlap old tiles. So must move by at least 1.
- If you move by less than 3, new clusters will overlap with old clusters. Must move by at least 3.
- If you move by less than 3ⁿ, new *n*-clusters will overlap with old *n*-clusters.

Hierarchies are never periodic

- If you move the pattern to the side, could you get the exact same thing again?
- If you move by less than 1, new tiles will overlap old tiles. So must move by at least 1.
- If you move by less than 3, new clusters will overlap with old clusters. Must move by at least 3.
- If you move by less than 3ⁿ, new *n*-clusters will overlap with old *n*-clusters.
- There is structure at arbitrarily large length scales. No movement can preserve all of these structures.

・ロト ・同ト ・ヨト ・

Fibonacci Sequences / Tilings

• One dimensional tiling, on 2-letter alphabet $\{a, b\}$

Fibonacci Sequences / Tilings

• One dimensional tiling, on 2-letter alphabet $\{a, b\}$

•
$$\sigma(a) = ab, \ \sigma(b) = a.$$

Fibonacci Sequences / Tilings

• One dimensional tiling, on 2-letter alphabet $\{a, b\}$

•
$$\sigma(a) = ab, \ \sigma(b) = a.$$

•
$$\sigma^2(a) = aba, \ \sigma^2(b) = ab.$$

Fibonacci Sequences / Tilings

• One dimensional tiling, on 2-letter alphabet $\{a, b\}$

Fibonacci Sequences / Tilings

• One dimensional tiling, on 2-letter alphabet $\{a, b\}$

•
$$\sigma(a) = ab, \ \sigma(b) = a.$$

•
$$\sigma^2(a) = aba, \ \sigma^2(b) = ab$$

•
$$\sigma^3(a) = abaab = \sigma(a)\sigma(b)\sigma(a), \ \sigma^3(b) = aba = \sigma(a)\sigma(b).$$

• Two ways to think about $\sigma^{n+1}(a)$ or $\sigma^{n+1}(b)$:

•
$$\sigma^{n+1}(a) = \sigma(\sigma^n(a)), \ \sigma^{n+1}(b) = \sigma(\sigma^n(b)).$$

Fibonacci Sequences / Tilings

• One dimensional tiling, on 2-letter alphabet $\{a, b\}$

•
$$\sigma(a) = ab, \sigma(b) = a.$$

• $\sigma^2(a) = aba, \sigma^2(b) = ab.$
• $\sigma^3(a) = abaab = \sigma(a)\sigma(b)\sigma(a), \sigma^3(b) = aba = \sigma(a)\sigma(b).$
• Two ways to think about $\sigma^{n+1}(a)$ or $\sigma^{n+1}(b)$:
• $\sigma^{n+1}(a) = \sigma(\sigma^n(a)), \sigma^{n+1}(b) = \sigma(\sigma^n(b)).$
• $\sigma^{n+1}(b) = \sigma^n(\sigma(a)) = \sigma^n(a)\sigma^n(b), \sigma^{n+1}(b) = \sigma^n(\sigma(b)) = \sigma^n(a).$

Fibonacci Sequences / Tilings

• One dimensional tiling, on 2-letter alphabet $\{a, b\}$

•
$$\sigma(a) = ab, \sigma(b) = a.$$

• $\sigma^2(a) = aba, \sigma^2(b) = ab.$
• $\sigma^3(a) = abaab = \sigma(a)\sigma(b)\sigma(a), \sigma^3(b) = aba = \sigma(a)\sigma(b).$
• Two ways to think about $\sigma^{n+1}(a)$ or $\sigma^{n+1}(b)$:
• $\sigma^{n+1}(a) = \sigma(\sigma^n(a)), \sigma^{n+1}(b) = \sigma(\sigma^n(b)).$
• $\sigma^{n+1}(b) = \sigma^n(\sigma(a)) = \sigma^n(a)\sigma^n(b), \sigma^{n+1}(b) = \sigma^n(\sigma(b)) = \sigma^n(a).$
• Substitution matrix $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$. Eigenvalues $(1 \pm \sqrt{5})/2.$

Fibonacci Sequences / Tilings

• One dimensional tiling, on 2-letter alphabet $\{a, b\}$

•
$$\sigma(a) = ab, \sigma(b) = a.$$

• $\sigma^2(a) = aba, \sigma^2(b) = ab.$
• $\sigma^3(a) = abaab = \sigma(a)\sigma(b)\sigma(a), \sigma^3(b) = aba = \sigma(a)\sigma(b).$
• Two ways to think about $\sigma^{n+1}(a)$ or $\sigma^{n+1}(b)$:
• $\sigma^{n+1}(a) = \sigma(\sigma^n(a)), \sigma^{n+1}(b) = \sigma(\sigma^n(b)).$
• $\sigma^{n+1}(b) = \sigma^n(\sigma(a)) = \sigma^n(a)\sigma^n(b), \sigma^{n+1}(b) = \sigma^n(\sigma(b)) = \sigma^n(a).$
• Substitution matrix $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$. Eigenvalues $(1 \pm \sqrt{5})/2$.
• Each *a* marks beginning of a 1-supertile.

< □ > < 同 > < 回 >

ヨート

Thue-Morse Sequences / Tilings

• One dimensional tiling, on 2-letter alphabet $\{a, b\}$

Thue-Morse Sequences / Tilings

• One dimensional tiling, on 2-letter alphabet $\{a, b\}$

•
$$\sigma(a) = ab$$
, $\sigma(b) = ba$.

Thue-Morse Sequences / Tilings

• One dimensional tiling, on 2-letter alphabet $\{a, b\}$

•
$$\sigma(a) = ab, \ \sigma(b) = ba.$$

•
$$\sigma^2(a) = abba, \ \sigma^2(b) = baab.$$

Thue-Morse Sequences / Tilings

• One dimensional tiling, on 2-letter alphabet $\{a, b\}$

•
$$\sigma(a) = ab, \ \sigma(b) = ba.$$

•
$$\sigma^2(a) = abba, \ \sigma^2(b) = baab.$$

•
$$\sigma^3(a) = abbabaab, \ \sigma^3(b) = baababba.$$

Thue-Morse Sequences / Tilings

• One dimensional tiling, on 2-letter alphabet $\{a, b\}$

Thue-Morse Sequences / Tilings

• One dimensional tiling, on 2-letter alphabet $\{a, b\}$

•
$$\sigma(a) = ab, \sigma(b) = ba.$$

• $\sigma^2(a) = abba, \sigma^2(b) = baab.$
• $\sigma^3(a) = abbabaab, \sigma^3(b) = baababba.$
• $\sigma^{n+1}(a) = \sigma(\sigma^n(a)) = \sigma^n(a)\sigma^n(b), \sigma^{n+1}(b) = \sigma(\sigma^n(b)) = \sigma^n(b)\sigma^n(a).$
• Substitution matrix $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$. Eigenvalues 2, 0.

Thue-Morse Sequences / Tilings

• One dimensional tiling, on 2-letter alphabet $\{a, b\}$

•
$$\sigma(a) = ab, \sigma(b) = ba.$$

• $\sigma^2(a) = abba, \sigma^2(b) = baab.$
• $\sigma^3(a) = abbabaab, \sigma^3(b) = baababba.$
• $\sigma^{n+1}(a) = \sigma(\sigma^n(a)) = \sigma^n(a)\sigma^n(b), \sigma^{n+1}(b) = \sigma(\sigma^n(b)) = \sigma^n(b)\sigma^n(a).$
• Substitution matrix $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$. Eigenvalues 2, 0.

• Never see 3 consecutive *a*'s or *b*'s. Consecutive *a*'s or *b*'s always come from different supertiles.

Image: A image: A

Chair Tilings

<ロ> <同> <同> < 同> < 同>

æ
Chair Tilings

▲ 同 ▶ → 三 ▶

Chair Tilings

Table of Contents

- 1 What is the world made of?
 - Types of matter
 - Hierarchy
- 2 Examples
- Substitution tiling spaces
- Primitivity, Recognizability and Nonperiodicity
- 5 Measure Theory
- 6 Spectral Theory and Mixing

▲ 同 ▶ → 三 ▶

Tiling spaces

Work with fixed finite *alphabet* of tile types (prototiles).
 WLOG can work with polytopes. Can have multiple prototiles with same geometry. Distinguish by labels.

< ロト < 同ト < 三ト <

Tiling spaces

- Work with fixed finite *alphabet* of tile types (prototiles).
 WLOG can work with polytopes. Can have multiple prototiles with same geometry. Distinguish by labels.
- A tile is a translate of a prototile.
- A *tiling* is a collection of tiles that cover the plane and intersect only on their boundaries.

▲□ ► ▲ □ ► ▲

Tiling spaces

- Work with fixed finite *alphabet* of tile types (prototiles).
 WLOG can work with polytopes. Can have multiple prototiles with same geometry. Distinguish by labels.
- A tile is a translate of a prototile.
- A *tiling* is a collection of tiles that cover the plane and intersect only on their boundaries.
- Two tilings are ϵ -close if they agree, on $B_{1/\epsilon}$ up to ϵ -translation.
- Metric depends on choice of origin, but topology is translation-invariant. A sequence of tilings converges if its patches converge on all compact sets.

• □ ▶ • □ ▶ • □ ▶ • □

Tiling spaces

- Work with fixed finite *alphabet* of tile types (prototiles).
 WLOG can work with polytopes. Can have multiple prototiles with same geometry. Distinguish by labels.
- A tile is a translate of a prototile.
- A *tiling* is a collection of tiles that cover the plane and intersect only on their boundaries.
- Two tilings are $\epsilon\text{-close}$ if they agree, on $B_{1/\epsilon}$ up to $\epsilon\text{-translation}.$
- Metric depends on choice of origin, but topology is translation-invariant. A sequence of tilings converges if its patches converge on all compact sets.
- A tiling space is a collection of tilings that is
 - Invariant under translation, and
 - Closed in the tiling topology.

< ロト < 同ト < 三ト <

Continuous hulls

• Start with reference tiling T.

(日) (同) (三) (三)

э

Continuous hulls

- Start with reference tiling T.
- $\{T x\}$ is *orbit* of T under translation.

(日) (同) (三) (三)

Continuous hulls

- Start with reference tiling T.
- $\{T x\}$ is *orbit* of T under translation.
- Closure Ω_T of orbit is *continuous hull* of T, aka tiling space of T.

< □ > < 同 > < 回 >

Continuous hulls

- Start with reference tiling T.
- $\{T x\}$ is *orbit* of T under translation.
- Closure Ω_T of orbit is *continuous hull* of T, aka tiling space of T.
- $T' \subset \Omega_T$ iff every patch of T' is found somewhere in T.

- - ◆ 同 ▶ - ◆ 目 ▶

Ingredients of a substitution tiling space

• Finite collection of tile types t_1, \ldots, t_m .

(日) (同) (三) (三)

Ingredients of a substitution tiling space

- Finite collection of tile types t_1, \ldots, t_m .
- Stretching factor $\lambda > 1$.

- 4 同 6 4 日 6 4 日 6

Ingredients of a substitution tiling space

- Finite collection of tile types t_1, \ldots, t_m .
- Stretching factor $\lambda > 1$.
- Collection of patches $\sigma(t_i)$ with the same footprint as λt_i . σ is substitution rule.

A (1) > A (2) > A

Ingredients of a substitution tiling space

- Finite collection of tile types t_1, \ldots, t_m .
- Stretching factor $\lambda > 1$.
- Collection of patches $\sigma(t_i)$ with the same footprint as λt_i . σ is substitution rule.
- $\sigma^n(t_i)$ is called an *n*-supertile of type t_i .

- 4 同 6 4 日 6 4 日 6

Ingredients of a substitution tiling space

- Finite collection of tile types t_1, \ldots, t_m .
- Stretching factor $\lambda > 1$.
- Collection of patches $\sigma(t_i)$ with the same footprint as λt_i . σ is substitution rule.
- $\sigma^n(t_i)$ is called an *n*-supertile of type t_i .
- A tiling *T* is *admissible* if every finite patch of *T* can be found in some supertile of arbitrary order.

▲ @ ▶ < ∃ ▶</p>

Ingredients of a substitution tiling space

- Finite collection of tile types t_1, \ldots, t_m .
- Stretching factor $\lambda > 1$.
- Collection of patches $\sigma(t_i)$ with the same footprint as λt_i . σ is substitution rule.
- $\sigma^n(t_i)$ is called an *n*-supertile of type t_i .
- A tiling *T* is *admissible* if every finite patch of *T* can be found in some supertile of arbitrary order.
- Tiling space Ω_{σ} is the set of all admissible tilings.

• □ ▶ • □ ▶ • □ ▶ • □

Substitution as a map

• σ acts on tiles, patches, and tilings. Dilate w.r.t. origin by λ and replace each dilated tile with corresponding patch.

(日) (同) (三) (三)

Substitution as a map

- σ acts on tiles, patches, and tilings. Dilate w.r.t. origin by λ and replace each dilated tile with corresponding patch.
- σ is continuous map $T_{\sigma} \to T_{\sigma}$.

(日) (同) (三) (三)

Substitution as a map

- σ acts on tiles, patches, and tilings. Dilate w.r.t. origin by λ and replace each dilated tile with corresponding patch.
- σ is continuous map $T_{\sigma} \to T_{\sigma}$.
- When is σ injective? Surjective? A homeomorphism?

< ロ > < 同 > < 回 > < 回 >

Surjectivity

Theorem

Under very mild assumptions^{*}, $\sigma : \Omega_{\sigma} \rightarrow \Omega_{\sigma}$ is surjective.

<ロ> <同> <同> < 同> < 同>

Surjectivity

Theorem

Under very mild assumptions^{*}, $\sigma : \Omega_{\sigma} \to \Omega_{\sigma}$ is surjective.

Proof.

If $T \in \Omega_{\sigma}$ and r > 0, $B_r \cap T$ is found in some supertile, so $\exists T_r$ s.t. T and $\sigma(T_r)$ agree on B_r . By compactness, some subsequence of the $\{T_r\}$ converge to T_{∞} , and $T = \sigma(T_{\infty})$.

(日) (同) (三) (三)

Surjectivity

Theorem

Under very mild assumptions^{*}, $\sigma : \Omega_{\sigma} \rightarrow \Omega_{\sigma}$ is surjective.

Proof.

If $T \in \Omega_{\sigma}$ and r > 0, $B_r \cap T$ is found in some supertile, so $\exists T_r$ s.t. T and $\sigma(T_r)$ agree on B_r . By compactness, some subsequence of the $\{T_r\}$ converge to T_{∞} , and $T = \sigma(T_{\infty})$.

* Every tiling in Ω must contain at least one tile of each type.

(日) (同) (三) (三)

Table of Contents

- What is the world made of?
 - Types of matter
 - Hierarchy
- 2 Examples
- 3 Substitution tiling spaces
- Primitivity, Recognizability and Nonperiodicity
- 5 Measure Theory
- 6 Spectral Theory and Mixing

▲ □ ▶ → □ ▶

Primitive definitions

 A square matrix M with non-negative entries is primitive if for some n > 0, all entries of Mⁿ are positive.

(日) (同) (三) (三)

Primitive definitions

- A square matrix *M* with non-negative entries is *primitive* if for some n > 0, all entries of Mⁿ are positive.
- **Perron-Frobenius Theorem:** If M is primitive, then the largest eigenvalue λ_{PF} of M is real and positive and the corresponding L- and R-eigenvectors have all positive entries.

Image: A = A

Primitive definitions

- A square matrix *M* with non-negative entries is *primitive* if for some n > 0, all entries of Mⁿ are positive.
- **Perron-Frobenius Theorem:** If M is primitive, then the largest eigenvalue λ_{PF} of M is real and positive and the corresponding L- and R-eigenvectors have all positive entries.
- λ⁻ⁿMⁿ approaches rank-1 matrix, with columns (rows) multiples of R-(L-)eigenvector.

・ 同 ト く 三 ト く

Primitive definitions

- A square matrix M with non-negative entries is primitive if for some n > 0, all entries of Mⁿ are positive.
- **Perron-Frobenius Theorem:** If M is primitive, then the largest eigenvalue λ_{PF} of M is real and positive and the corresponding L- and R-eigenvectors have all positive entries.
- λ⁻ⁿMⁿ approaches rank-1 matrix, with columns (rows) multiples of R-(L-)eigenvector.
- A substitution σ is primitive if its matrix M_{σ} is primitive.

Primitive definitions

- A square matrix *M* with non-negative entries is *primitive* if for some n > 0, all entries of Mⁿ are positive.
- **Perron-Frobenius Theorem:** If M is primitive, then the largest eigenvalue λ_{PF} of M is real and positive and the corresponding L- and R-eigenvectors have all positive entries.
- λ⁻ⁿMⁿ approaches rank-1 matrix, with columns (rows) multiples of R-(L-)eigenvector.
- A substitution σ is primitive if its matrix M_{σ} is primitive.
- σ is primitive iff ∃n > 0 such that every n-supertile contains at least one tile of each type.

< ロ > < 同 > < 回 > < 回 >

Recognizability and Nonperiodicity

- Substitution σ is non-periodic if $T \in \Omega_{\sigma} \land (T = T - x) \implies x = 0.$
- σ is recognizable (aka has unique decomposition property) if
 σ : Ω_σ → Ω_σ is injective.

- **4 同 6 4 日 6 4 日 6**

Recognizability and Nonperiodicity

- Substitution σ is non-periodic if $T \in \Omega_{\sigma} \land (T = T - x) \implies x = 0.$
- σ is recognizable (aka has unique decomposition property) if
 σ : Ω_σ → Ω_σ is injective.
- Counterexample: $\Box \rightarrow \Box$. Periodic and not recognizable.

Recognizability and Nonperiodicity

- Substitution σ is non-periodic if $T \in \Omega_{\sigma} \land (T = T - x) \implies x = 0.$
- σ is recognizable (aka has unique decomposition property) if
 σ : Ω_σ → Ω_σ is injective.
- Counterexample: $\Box \rightarrow \Box \Box$. Periodic and not recognizable.
- Easy theorem: Recognizability implies non-periodicity.

Recognizability and Nonperiodicity

- Substitution σ is non-periodic if $T \in \Omega_{\sigma} \land (T = T - x) \implies x = 0.$
- σ is recognizable (aka has unique decomposition property) if
 σ : Ω_σ → Ω_σ is injective.
- Counterexample: $\Box \rightarrow \Box \Box$. Periodic and not recognizable.
- Easy theorem: Recognizability implies non-periodicity.
- Hard theorem (Mossé, Solomyak): Non-periodicity implies recognizability.

Desubstitution arguments

How to prove almost anything about non-periodic substitution tilings:

Image: A image: A

- ∢ ≣ ▶

Desubstitution arguments

How to prove almost anything about non-periodic substitution tilings:

If σ is recognizable, σ is homeomorphism, σ⁻¹ is uniformly continuous, and ∃ recognizability radius D s.t., if T and T' agree on B_D, then they have the same 1-supertile at the origin.

A (1) < (1) < (1) </p>

Desubstitution arguments

How to prove almost anything about non-periodic substitution tilings:

- If σ is recognizable, σ is homeomorphism, σ⁻¹ is uniformly continuous, and ∃ recognizability radius D s.t., if T and T' agree on B_D, then they have the same 1-supertile at the origin.
- If T and T' agree on B_{r+D} , they have the same 1-supertiles on B_r .
Desubstitution arguments

How to prove almost anything about non-periodic substitution tilings:

- If σ is recognizable, σ is homeomorphism, σ⁻¹ is uniformly continuous, and ∃ recognizability radius D s.t., if T and T' agree on B_D, then they have the same 1-supertile at the origin.
- If T and T' agree on B_{r+D} , they have the same 1-supertiles on B_r .
- Relate properties of *T* on *B_r* to properties of σ⁻¹(*T*) on *B_{r'}*, where r' ≈ r/λ. Convergence of ∑*D*/λⁿ makes value of *D* irrelevant at large scales.

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Desubstitution arguments

How to prove almost anything about non-periodic substitution tilings:

- If σ is recognizable, σ is homeomorphism, σ⁻¹ is uniformly continuous, and ∃ recognizability radius D s.t., if T and T' agree on B_D, then they have the same 1-supertile at the origin.
- If T and T' agree on B_{r+D} , they have the same 1-supertiles on B_r .
- Relate properties of *T* on *B_r* to properties of σ⁻¹(*T*) on *B_{r'}*, where r' ≈ r/λ. Convergence of ∑*D*/λⁿ makes value of *D* irrelevant at large scales.
- Repeat as many times as necessary, until we are talking about small patches where we can prove things by hand.

Primitivity implies repetitivity

A tiling T is repetitive if for each patch P ∈ T there is a radius R(P) s.t. every ball of radius R(P) contains at least one copy of P.

Primitivity implies repetitivity

- A tiling T is repetitive if for each patch P ∈ T there is a radius R(P) s.t. every ball of radius R(P) contains at least one copy of P.
- A dynamical system is *minimal* if every orbit is dense.

Image: A = A

Primitivity implies repetitivity

- A tiling T is repetitive if for each patch P ∈ T there is a radius R(P) s.t. every ball of radius R(P) contains at least one copy of P.
- A dynamical system is *minimal* if every orbit is dense.
- Ω_T is minimal if and only if T is repetitive.

Primitivity implies repetitivity

- A tiling T is repetitive if for each patch P ∈ T there is a radius R(P) s.t. every ball of radius R(P) contains at least one copy of P.
- A dynamical system is *minimal* if every orbit is dense.
- Ω_T is minimal if and only if T is repetitive.
- If σ is primitive, then Ω_{σ} is minimal and every $T \in \Omega_{\sigma}$ is repetitive.

• □ ▶ • □ ▶ • □ ▶ •

Table of Contents

- 1 What is the world made of?
 - Types of matter
 - Hierarchy
- 2 Examples
- 3 Substitution tiling spaces
- Primitivity, Recognizability and Nonperiodicity
- 6 Measure Theory
- 6 Spectral Theory and Mixing

Measures are frequencies

• Measures give probability that origin lies in a patch P.

Measures are frequencies

- Measures give probability that origin lies in a patch P.
- Same as the density of P in a generic tiling.

Measures are frequencies

- Measures give probability that origin lies in a patch P.
- Same as the density of P in a generic tiling.
- If you know the density of each *n*-supertile, you (almost) know the density of *P*:

$$\rho(P) = \sum_{i} \rho(\sigma^{n}(t_{i})) \times (\#(P' \text{s in } \sigma^{n}(t_{i})) + \text{overlaps.}$$

Image: A image: A

Measures are frequencies

- Measures give probability that origin lies in a patch P.
- Same as the density of P in a generic tiling.
- If you know the density of each *n*-supertile, you (almost) know the density of *P*:

$$ho(P) = \sum_{i}
ho(\sigma^n(t_i)) imes (\#(P' \text{s in } \sigma^n(t_i)) + \text{overlaps.})$$

 To resolve boundary cases, either (a) take n→∞ or (b) use collared tiles.

< ロ > < 同 > < 回 > < 回 >

Measures are frequencies

- Measures give probability that origin lies in a patch P.
- Same as the density of P in a generic tiling.
- If you know the density of each *n*-supertile, you (almost) know the density of *P*:

$$\rho(P) = \sum_{i} \rho(\sigma^{n}(t_{i})) \times (\#(P' \text{s in } \sigma^{n}(t_{i})) + \text{overlaps.}$$

- To resolve boundary cases, either (a) take n→∞ or (b) use collared tiles.
- Either way, $\exists !$ invariant measure on Ω_{σ} .

Example: Fibonacci

•
$$\sigma(a) = ab, \ \sigma(b) = a, \ M = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}.$$

•
$$\lambda_{PF} = \phi := (1 + \sqrt{5})/2.$$

• Left-eigenvector $(\phi, 1)$ gives lengths of tiles: Take $|a| = \phi$, |b| = 1.

(日) (同) (三) (三)

э

Example: Fibonacci

•
$$\sigma(a) = ab, \ \sigma(b) = a, \ M = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}.$$

•
$$\lambda_{PF} = \phi := (1 + \sqrt{5})/2.$$

- Left-eigenvector $(\phi, 1)$ gives lengths of tiles: Take $|a| = \phi$, |b| = 1.
- Right-eigenvector $\begin{pmatrix} \phi \\ 1 \end{pmatrix}$ gives relative frequency of tiles: ϕ a's for every b.

• Density of
$$\sigma^n(a) = \phi^{1-n}/(2+\phi)$$
; density of $\sigma^n(b) = \phi^{-n}/(2+\phi)$.

Find the density of aaba

The pattern aaba is found

- Once in each $\sigma^4(a) = abaababaa$,
- Zero times in $\sigma^4(b) = abaab$,
- Once in each transition $\sigma^4(a)\sigma^4(a)$.
- Once in each transition $\sigma^4(a)\sigma^4(b)$.
- Once in each transition $\sigma^4(b)\sigma^4(a)$.
- Need densities of combinations of two 4-supertiles.

Collaring Fibonacci

Rewrite Fibonacci in terms of (right)-collared tiles:

•
$$A_1 = a(a), A_2 = a(b), B = b(a).$$

(日) (同) (三) (三)

Collaring Fibonacci

Rewrite Fibonacci in terms of (right)-collared tiles:

(日) (同) (三) (三)

Collaring Fibonacci

Rewrite Fibonacci in terms of (right)-collared tiles:

•
$$A_1 = a(a), A_2 = a(b), B = b(a).$$

• $\sigma(A_1) = ab(ab) = A_2B, \sigma(A_2) = ab(a) = A_2B, \sigma(B) = (a)(ab) = A_1.$
• Substitution matrix: $\begin{pmatrix} 0 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix}$. PF E-vec: $\begin{pmatrix} 1 \\ \phi \\ \phi \end{pmatrix}$.

- 4 同 6 4 日 6 4 日 6

Collaring Fibonacci

Rewrite Fibonacci in terms of (right)-collared tiles:

•
$$A_1 = a(a), A_2 = a(b), B = b(a).$$

• $\sigma(A_1) = ab(ab) = A_2B, \sigma(A_2) = ab(a) = A_2B, \sigma(B) = (a)(ab) = A_1.$
• Substitution matrix: $\begin{pmatrix} 0 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix}$. PF E-vec: $\begin{pmatrix} 1 \\ \phi \\ \phi \end{pmatrix}$.
• $\rho\begin{pmatrix} \sigma^4(A_1) \\ \sigma^4(A_2) \\ \sigma^4(B) \end{pmatrix} = \frac{1}{2+\phi} \begin{pmatrix} \phi^{-5} \\ \phi^{-4} \\ \phi^{-4} \end{pmatrix}.$

(日) (同) (三) (三)

Collaring Fibonacci

Rewrite Fibonacci in terms of (right)-collared tiles:

•
$$A_1 = a(a), A_2 = a(b), B = b(a).$$

• $\sigma(A_1) = ab(ab) = A_2B, \sigma(A_2) = ab(a) = A_2B, \sigma(B) = (a)(ab) = A_1.$
• Substitution matrix: $\begin{pmatrix} 0 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix}$. PF E-vec: $\begin{pmatrix} 1 \\ \phi \\ \phi \end{pmatrix}$.
• $\rho\begin{pmatrix} \sigma^4(A_1) \\ \sigma^4(A_2) \\ \sigma^4(B) \end{pmatrix} = \frac{1}{2+\phi} \begin{pmatrix} \phi^{-5} \\ \phi^{-4} \\ \phi^{-4} \end{pmatrix}$.
• $\rho(aaba) = 2\rho(\sigma^4(A_1)) + 2\rho(\sigma^4(A_2)) + \rho(\sigma^4(B)) = \frac{\phi^{-5}(2\phi + 3)}{2+\phi}$.

æ

Table of Contents

- What is the world made of?
 - Types of matter
 - Hierarchy
- 2 Examples
- 3 Substitution tiling spaces
- Primitivity, Recognizability and Nonperiodicity
- 5 Measure Theory
- 6 Spectral Theory and Mixing

Eigenfunctions

- For $k \in (\mathbb{R}^n)^*$, look for functions $f : \Omega_{\sigma} \to \mathbb{C}$ with $f(T-x) = \exp(2\pi i k \cdot x) f(T)$.
- If f is measurable, k is a measurable eigenvalue.

(日)

Eigenfunctions

- For $k \in (\mathbb{R}^n)^*$, look for functions $f : \Omega_{\sigma} \to \mathbb{C}$ with $f(T x) = \exp(2\pi i k \cdot x) f(T)$.
- If f is measurable, k is a measurable eigenvalue.
- If f is continuous, k is a continuous eigenvalue.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Eigenfunctions

- For $k \in (\mathbb{R}^n)^*$, look for functions $f : \Omega_{\sigma} \to \mathbb{C}$ with $f(T-x) = \exp(2\pi i k \cdot x) f(T)$.
- If f is measurable, k is a measurable eigenvalue.
- If f is continuous, k is a continuous eigenvalue.
- Theorem: (Queffelec, Solomyak?) If σ is a primitive substitution, all measurable eigenvalues are continuous.

・ 同 ト く 三 ト く

Return vectors

Generalization of "return times" for 1D dynamics.

• Definition: If T - x and T - y agree on B_r , then x - y is a *return vector* of radius *r*.

(日) (同) (三) (三)

Return vectors

Generalization of "return times" for 1D dynamics.

- Definition: If T x and T y agree on B_r , then x y is a *return vector* of radius *r*.
- All tilings have the same patches and the same return vectors.

Return vectors

Generalization of "return times" for 1D dynamics.

- Definition: If T x and T y agree on B_r , then x y is a *return vector* of radius *r*.
- All tilings have the same patches and the same return vectors.
- If v is a return vector of radius r, then λv is a return vector of radius λr .

Return vectors

Generalization of "return times" for 1D dynamics.

- Definition: If T x and T y agree on B_r , then x y is a *return vector* of radius *r*.
- All tilings have the same patches and the same return vectors.
- If v is a return vector of radius r, then λv is a return vector of radius λr .
- If v is return vector of radius r, then v/λ is a return vector of radius $(r D)/\lambda$.

Return vectors

Generalization of "return times" for 1D dynamics.

- Definition: If T x and T y agree on B_r , then x y is a *return vector* of radius *r*.
- All tilings have the same patches and the same return vectors.
- If v is a return vector of radius r, then λv is a return vector of radius λr .
- If v is return vector of radius r, then v/λ is a return vector of radius $(r D)/\lambda$.
- All return vectors are sums of short return vectors. Most "for all return vectors" statements only need to be checked on these short generators.

Return vectors

Generalization of "return times" for 1D dynamics.

- Definition: If T x and T y agree on B_r , then x y is a *return vector* of radius *r*.
- All tilings have the same patches and the same return vectors.
- If v is a return vector of radius r, then λv is a return vector of radius λr .
- If v is return vector of radius r, then v/λ is a return vector of radius $(r D)/\lambda$.
- All return vectors are sums of short return vectors. Most "for all return vectors" statements only need to be checked on these short generators.
- E.g. for 1D substitutions, just look at displacement between successive *a* tiles.

Criteria for eigenvalues

• If k is continuous eigenvalue and v is a return vector, then $\exp(i\lambda^n k \cdot v) \rightarrow 1$.

(日) (同) (三) (三)

Criteria for eigenvalues

- If k is continuous eigenvalue and v is a return vector, then $\exp(i\lambda^n k \cdot v) \rightarrow 1$.
- If $\lim \exp(2\pi i \lambda^n k \cdot v) = 1$ for every return vector v, then k is a continuous eigenvalue.

Criteria for eigenvalues

- If k is continuous eigenvalue and v is a return vector, then $\exp(i\lambda^n k \cdot v) \rightarrow 1$.
- If $\lim \exp(2\pi i \lambda^n k \cdot v) = 1$ for every return vector v, then k is a continuous eigenvalue.
- If $\lim \exp(2\pi i \lambda^n k \cdot v) = 1$ for every short return vector v, then k is a continuous eigenvalue.

< □ > < 同 > < 三 >

Criteria for eigenvalues

- If k is continuous eigenvalue and v is a return vector, then $\exp(i\lambda^n k \cdot v) \rightarrow 1$.
- If $\lim \exp(2\pi i \lambda^n k \cdot v) = 1$ for every return vector v, then k is a continuous eigenvalue.
- If $\lim \exp(2\pi i \lambda^n k \cdot v) = 1$ for every short return vector v, then k is a continuous eigenvalue.
- Convergence is only possible if k = 0 or λ is Pisot. Otherwise system is "weakly mixing".

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Criteria for eigenvalues

- If k is continuous eigenvalue and v is a return vector, then $\exp(i\lambda^n k \cdot v) \rightarrow 1$.
- If $\lim \exp(2\pi i \lambda^n k \cdot v) = 1$ for every return vector v, then k is a continuous eigenvalue.
- If $\lim \exp(2\pi i \lambda^n k \cdot v) = 1$ for every short return vector v, then k is a continuous eigenvalue.
- Convergence is only possible if k = 0 or λ is Pisot. Otherwise system is "weakly mixing".
- (More general substitutions can allow λ to be in "Pisot family".)

Example: Thue-Morse

$$\sigma(a) = ab, \ \sigma(b) = ba, \ M = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
, $\lambda = 2$. L-eigenvector $(1, 1)$

gives tile lengths.

э

(日) (同) (三) (三)
Example: Thue-Morse

$$\sigma(a) = ab, \ \sigma(b) = ba, \ M = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \ \lambda = 2.$$
 L-eigenvector $(1, 1)$

gives tile lengths.

• Short return vectors are 1, 2, and 3.

<ロト < 同ト < 三ト

∃ >

Example: Thue-Morse

$$\sigma(a) = ab, \ \sigma(b) = ba, \ M = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \ \lambda = 2.$$
 L-eigenvector $(1, 1)$

gives tile lengths.

- Short return vectors are 1, 2, and 3.
- k is an eigenvalue iff $\exp(2^n 2\pi ik)$, $\exp(2^n 2\pi i2k)$, $\exp(2^n 2\pi i3k) \rightarrow 1$.

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Example: Thue-Morse

$$\sigma(a) = ab, \ \sigma(b) = ba, \ M = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \ \lambda = 2.$$
 L-eigenvector $(1, 1)$

gives tile lengths.

- Short return vectors are 1, 2, and 3.
- k is an eigenvalue iff $\exp(2^n 2\pi ik)$, $\exp(2^n 2\pi i2k)$, $\exp(2^n 2\pi i3k) \rightarrow 1$.
- k is an eigenvalue iff $\exp(2^n 2\pi i k) \to 1$.

Image: A = A

Example: Thue-Morse

$$\sigma(a) = ab, \ \sigma(b) = ba, \ M = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \ \lambda = 2.$$
 L-eigenvector $(1, 1)$

gives tile lengths.

- Short return vectors are 1, 2, and 3.
- k is an eigenvalue iff $\exp(2^n 2\pi ik)$, $\exp(2^n 2\pi i2k)$, $\exp(2^n 2\pi i3k) \rightarrow 1$.
- k is an eigenvalue iff $\exp(2^n 2\pi i k) \to 1$.
- k is an eigenvalue iff $\exp(2^n 2\pi i k)$ is eventually 1.

Image: A image: A

Example: Thue-Morse

$$\sigma(a) = ab, \ \sigma(b) = ba, \ M = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \ \lambda = 2.$$
 L-eigenvector $(1, 1)$

gives tile lengths.

- Short return vectors are 1, 2, and 3.
- k is an eigenvalue iff $\exp(2^n 2\pi ik)$, $\exp(2^n 2\pi i2k)$, $\exp(2^n 2\pi i3k) \rightarrow 1$.
- k is an eigenvalue iff $\exp(2^n 2\pi i k) \to 1$.
- k is an eigenvalue iff $\exp(2^n 2\pi i k)$ is eventually 1.
- k is an eigenvalue iff k = p/q with q a power of 2.

Image: A image: A

Example: Thue-Morse

$$\sigma(a) = ab, \ \sigma(b) = ba, \ M = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \ \lambda = 2.$$
 L-eigenvector $(1, 1)$

gives tile lengths.

- Short return vectors are 1, 2, and 3.
- k is an eigenvalue iff $\exp(2^n 2\pi ik)$, $\exp(2^n 2\pi i2k)$, $\exp(2^n 2\pi i3k) \rightarrow 1$.
- k is an eigenvalue iff $\exp(2^n 2\pi i k) \to 1$.
- k is an eigenvalue iff $\exp(2^n 2\pi i k)$ is eventually 1.
- k is an eigenvalue iff k = p/q with q a power of 2.
- (Discrete) spectrum of Thue-Morse is $\mathbb{Z}[1/2]$.

A (1) > A (2) > A

Example: Thue-Morse

$$\sigma(a) = ab$$
, $\sigma(b) = ba$, $M = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$, $\lambda = 2$. L-eigenvector $(1, 1)$

gives tile lengths.

- Short return vectors are 1, 2, and 3.
- k is an eigenvalue iff $\exp(2^n 2\pi ik)$, $\exp(2^n 2\pi i2k)$, $\exp(2^n 2\pi i3k) \rightarrow 1$.
- k is an eigenvalue iff $\exp(2^n 2\pi i k) \to 1$.
- k is an eigenvalue iff $exp(2^n 2\pi ik)$ is eventually 1.
- k is an eigenvalue iff k = p/q with q a power of 2.
- (Discrete) spectrum of Thue-Morse is $\mathbb{Z}[1/2]$.
- Continuous spectrum is more complicated.

Image: A image: A

Substitutions of constant length

A 1D (primitive, non-periodic) substitution has constant length N if all 1-supertiles have exactly N letters.

▲ 同 ▶ → 三 ▶

Substitutions of constant length

A 1D (primitive, non-periodic) substitution has constant length N if all 1-supertiles have exactly N letters.

• The *height h* of the substitution is lcm(return vectors).

▲ 同 ▶ → 三 ▶

Substitutions of constant length

A 1D (primitive, non-periodic) substitution has constant length N if all 1-supertiles have exactly N letters.

- The *height h* of the substitution is lcm(return vectors).
- PF eigenvalue is N, L-eigenvector is (1, ..., 1). All tiles have length 1.

▲□ ► < □ ►</p>

Substitutions of constant length

A 1D (primitive, non-periodic) substitution has constant length N if all 1-supertiles have exactly N letters.

- The *height h* of the substitution is lcm(return vectors).
- PF eigenvalue is N, L-eigenvector is (1, ..., 1). All tiles have length 1.
- Criterion for eigenvalue k is $\lim \exp(2\pi i N^n hk) \to 1$.

▲□ ► < □ ► </p>

Substitutions of constant length

A 1D (primitive, non-periodic) substitution has constant length N if all 1-supertiles have exactly N letters.

- The *height h* of the substitution is lcm(return vectors).
- PF eigenvalue is N, L-eigenvector is (1, ..., 1). All tiles have length 1.
- Criterion for eigenvalue k is $\lim \exp(2\pi i N^n hk) \to 1$.
- Discrete spectrum is $\frac{1}{h}\mathbb{Z}[1/N]$.

▲□ ► < □ ► </p>

Table of Contents

- 1 What is the world made of?
 - Types of matter
 - Hierarchy
- 2 Examples
- 3 Substitution tiling spaces
- Primitivity, Recognizability and Nonperiodicity
- 5 Measure Theory
- 6 Spectral Theory and Mixing

▲ 同 ▶ → 三 ▶

Anderson-Putnam comples

• Take one copy of each tile type.

Image: A = A

∃ >

Anderson-Putnam comples

- Take one copy of each tile type.
- If there is a tiling where tiles t_i and t_j touch, identify corresponding edges/vertices/etc.

▲ 同 ▶ → ● 三

Anderson-Putnam comples

- Take one copy of each tile type.
- If there is a tiling where tiles t_i and t_j touch, identify corresponding edges/vertices/etc.
- Quotient space is compact branched manifold Γ .

< □ > < 三 >

Anderson-Putnam comples

- Take one copy of each tile type.
- If there is a tiling where tiles t_i and t_j touch, identify corresponding edges/vertices/etc.
- Quotient space is compact branched manifold Γ .
- Point in Γ is instruction for placing one tile at the origin.

< A > < 3

Anderson-Putnam comples

- Take one copy of each tile type.
- If there is a tiling where tiles t_i and t_j touch, identify corresponding edges/vertices/etc.
- Quotient space is compact branched manifold Γ .
- Point in Γ is instruction for placing one tile at the origin.
- Substitution maps $\Gamma \to \Gamma$.

Image: A = A

Example: Fibonacci

• Two tile types give two intervals.

< 日 > < 同 > < 三 > < 三 >

э

Example: Fibonacci

- Two tile types give two intervals.
- *aa* is possible, so right endpoint of a = left endpoint of *a*.

< □ > < 同 > < 三 >

Example: Fibonacci

- Two tile types give two intervals.
- *aa* is possible, so right endpoint of a =left endpoint of *a*.
- *ab* is possible, so right endpoint of a =left endpoint of *b*.

- - ◆ 同 ▶ - ◆ 目 ▶

Example: Fibonacci

- Two tile types give two intervals.
- *aa* is possible, so right endpoint of a =left endpoint of *a*.
- *ab* is possible, so right endpoint of a =left endpoint of *b*.
- *ba* is possible, so right endpoint of b =left endpoint of *a*.

Image: A = A

Example: Fibonacci

- Two tile types give two intervals.
- *aa* is possible, so right endpoint of a =left endpoint of *a*.
- *ab* is possible, so right endpoint of a =left endpoint of *b*.
- *ba* is possible, so right endpoint of b =left endpoint of *a*.
- All endpoints are identified. Γ is a figure-8.

Example: Fibonacci

- Two tile types give two intervals.
- *aa* is possible, so right endpoint of a =left endpoint of *a*.
- *ab* is possible, so right endpoint of a =left endpoint of *b*.
- *ba* is possible, so right endpoint of b =left endpoint of *a*.
- All endpoints are identified. Γ is a figure-8.
- σ sends vertex to itself, *b* loop to *a* loop, and *a* loop to *a*-followed-by-*b*.

Inverse limits

Let X be a space and $f : X \to X$ a surjective continuous map.

• $\varprojlim_{x_0, x_1, \ldots}(X, f)$ is the set of sequences x_1, x_2, \ldots (or sometimes x_0, x_1, \ldots) s.t. each $x_i = f(x_{i+1})$.

・ロト ・同ト ・ヨト ・ヨト

Inverse limits

Let X be a space and $f : X \to X$ a surjective continuous map.

- $\varprojlim_{x_0, x_1, \ldots}(X, f)$ is the set of sequences x_1, x_2, \ldots (or sometimes x_0, x_1, \ldots) s.t. each $x_i = f(x_{i+1})$.

▲□ ► ▲ □ ► ▲

Inverse limits

Let X be a space and $f : X \to X$ a surjective continuous map.

- $\varprojlim_{x_0, x_1, \ldots}(X, f)$ is the set of sequences x_1, x_2, \ldots (or sometimes x_0, x_1, \ldots) s.t. each $x_i = f(x_{i+1})$.
- Knowing x_n tells you x_{n-1},..., x₁, but not x_{n+1}. The n-th copy of X is called the nth approximant to lim(X, f).

・ コ ト ・ 雪 ト ・ 日 ト ・

Dyadic solenoid

Let X be a circle. Think of *n*-th copy X_n as $\mathbb{R}/(2^n\mathbb{Z})$. Map f wraps circle around self twice. (See board)

< □ > < 同 > < 三 >

Substitution Tiling Spaces are Inverse Limits

• Let Γ_n be instructions for placing an *n*-supertile around the origin.

▲□ ► < □ ► </p>

Substitution Tiling Spaces are Inverse Limits

- Let Γ_n be instructions for placing an *n*-supertile around the origin.
- All Γ_n's look the same, up to scale. (Anderson-Putnam complex)

▲□ ► < □ ► </p>

Substitution Tiling Spaces are Inverse Limits

- Let Γ_n be instructions for placing an n-supertile around the origin.
- All Γ_n's look the same, up to scale. (Anderson-Putnam complex)
- Knowing the *n*-supertile around the origin determines the (n-1)-supertile. *f* is *forgetful map*.

- 4 同 6 4 日 6 4 日 6

Substitution Tiling Spaces are Inverse Limits

- Let Γ_n be instructions for placing an *n*-supertile around the origin.
- All Γ_n's look the same, up to scale. (Anderson-Putnam complex)
- Knowing the *n*-supertile around the origin determines the (n-1)-supertile. *f* is *forgetful map*.
- Point in lim(Γ, f) is consistent instructions for placing bigger and bigger supertiles around the origin.

▲□ ► < □ ► </p>

Substitution Tiling Spaces are Inverse Limits

- Let Γ_n be instructions for placing an *n*-supertile around the origin.
- All Γ_n's look the same, up to scale. (Anderson-Putnam complex)
- Knowing the *n*-supertile around the origin determines the (n-1)-supertile. *f* is *forgetful map*.
- Point in lim(Γ, f) is consistent instructions for placing bigger and bigger supertiles around the origin.
- If substitution "forces the border", this determines a complete tiling.

・ロト ・同ト ・ヨト ・ヨト

Substitution Tiling Spaces are Inverse Limits

- Let Γ_n be instructions for placing an *n*-supertile around the origin.
- All Γ_n's look the same, up to scale. (Anderson-Putnam complex)
- Knowing the *n*-supertile around the origin determines the (n-1)-supertile. *f* is *forgetful map*.
- Point in lim(Γ, f) is consistent instructions for placing bigger and bigger supertiles around the origin.
- If substitution "forces the border", this determines a complete tiling.
- If σ is any substitution, rewriting with collared tiles makes it force the border.

Cech cohomology

 On "nice" spaces, Čech cohomology is same as all other cohomologies.

- - ◆ 同 ▶ - ◆ 目 ▶

Cech cohomology

- On "nice" spaces, Čech cohomology is same as all other cohomologies.
- Čech cohomology respects inverse limits:

$$\check{H}^{k}(\varprojlim(X,f)) = \varinjlim(H^{k}(X),f^{*}).$$

- - ◆ 同 ▶ - ◆ 目 ▶

ヨート
Cech cohomology

- On "nice" spaces, Čech cohomology is same as all other cohomologies.
- Čech cohomology respects inverse limits:

$$\check{H}^k(\varprojlim(X,f)) = \varinjlim(H^k(X),f^*).$$

• For substitution tiling spaces,

$$\check{H}^k(\Omega_{\sigma}) = \varinjlim(H^k(\Gamma), \sigma^*).$$

Image: A image: A

Cech cohomology

- On "nice" spaces, Čech cohomology is same as all other cohomologies.
- Čech cohomology respects inverse limits:

$$\check{H}^{k}(\varprojlim(X,f)) = \varinjlim(H^{k}(X),f^{*}).$$

• For substitution tiling spaces,

$$\check{H}^k(\Omega_{\sigma}) = \varinjlim(H^k(\Gamma), \sigma^*).$$

• Example: For Fibonacci, $H^1(\Gamma) = \mathbb{Z}^2$, and σ^* acts by $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$. Direct limit is \mathbb{Z}^2 since matrix is invertible.

Table of Contents

- 1 What is the world made of?
 - Types of matter
 - Hierarchy
- 2 Examples
- 3 Substitution tiling spaces
- Primitivity, Recognizability and Nonperiodicity
- 5 Measure Theory
- 6 Spectral Theory and Mixing

▲ 同 ▶ → 三 ▶

Nice things to remember

 You can understand a lot about a substitution tiling from just the stretching factor λ.

▲ 同 ▶ → 三 ▶

Nice things to remember

- You can understand a lot about a substitution tiling from just the stretching factor λ.
- You can understand even more from the substitution matrix and from the short return vectors.

Image: A image: A

Nice things to remember

- You can understand a lot about a substitution tiling from just the stretching factor λ.
- You can understand even more from the substitution matrix and from the short return vectors.
- To understand what happens on the boundaries of supertiles, collar.

Image: A image: A

Nice things to remember

- You can understand a lot about a substitution tiling from just the stretching factor λ.
- You can understand even more from the substitution matrix and from the short return vectors.
- To understand what happens on the boundaries of supertiles, collar.
- $\bullet~$ If σ is a primitive non-periodic substitution, then
 - Ω_{σ} is uniquely ergodic. (Patch frequencies are well-defined.)
 - Ω_{σ} is minimal. (Tilings are repetitive.)
 - $\sigma: \Omega_{\sigma} \to \Omega_{\sigma}$ is invertible. (Substitution is recognizable.)
 - All eigenvalues are continuous.
 - $\Omega_{\sigma} = \varprojlim(\Gamma, \sigma)$, where Γ is the *collared* Anderson-Putnam complex.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト ・

Nice things to remember

- You can understand a lot about a substitution tiling from just the stretching factor λ.
- You can understand even more from the substitution matrix and from the short return vectors.
- To understand what happens on the boundaries of supertiles, collar.
- $\bullet~$ If σ is a primitive non-periodic substitution, then
 - Ω_{σ} is uniquely ergodic. (Patch frequencies are well-defined.)
 - Ω_{σ} is minimal. (Tilings are repetitive.)
 - $\sigma: \Omega_{\sigma} \to \Omega_{\sigma}$ is invertible. (Substitution is recognizable.)
 - All eigenvalues are continuous.
 - $\Omega_{\sigma} = \varprojlim(\Gamma, \sigma)$, where Γ is the *collared* Anderson-Putnam complex.
- Cohomology is easily computable.

< D > < A > < B >