Continuous eigenvalues for Meyer sets.
Mauricio Allendes Cerda.

Abstract

Let $D \subset \mathbb{R}^d$ a Delone set and (X_D, \mathbb{R}^d) its dynamic hull system. Following [1] when the abelian group $[D - D]$ is a finitely generated with r generators, we say that the rank of D is r and we write $\text{rank}(D) = r$. In this talk we will give a dynamical proof of the following result that appears in [3].

Theorem 1. Let $D \subset \mathbb{R}^d$ be a repetitive Meyer set with $\text{rank}(D) = r$. The system (X_D, \mathbb{R}^d) has $r \geq d$ continuous eigenvalues.

In dimension $d = 1$, following some ideas in [2], we will give conditions that ensure that every eigenvalue is continuous.

Theorem 2. Let $D \subset \mathbb{R}$ be a repetitive Meyer set such that (X_D, \mathbb{R}) is linearly recurrent. Suppose that exists a sequence of Kakutani-Rokhlin partitions such that for any integer $m \geq 1$ the heights $h_1(m), \ldots, h_c(m)$ are rationally independent. Then (X_D, \mathbb{R}) has only continuous eigenvalues.

We will exhibit some examples of dynamical system where Theorem 2 applies. Also we work two examples to observe that the hypotheses of being Meyer and having rationally independent heights are necessary in Theorem 2.

This is a joint work with Daniel Coronel.

References: