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Topics of the four lectures

(1) Wang tiles: aperiodicity and undecidability

(2) Tutorial on Cellular Automata

(3) From tiles to cellular automata

(4) Snakes and tiles



Wang tiles

Wang tile: a unit square tile with colored edges.

Tile set T : a finite collection of such tiles.

Valid tiling: an assignment

Z
2 −→ T

of tiles on infinite square lattice so that the abutting edges of

adjacent tiles have the same color.



Wang tiles

Wang tile: a unit square tile with colored edges.

Tile set T : a finite collection of such tiles.

Valid tiling: an assignment

Z
2 −→ T

of tiles on infinite square lattice so that the abutting edges of

adjacent tiles have the same color.

For example,

A B C D



With copies of the given four tiles we can properly tile a 5× 5

square. . .
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. . . and since the colors on the borders match this square can

be repeated to form a valid periodic tiling of the plane.



The tiling problem of Wang tiles is the decision problem to

determine if a given finite set of Wang tiles admits a valid

tiling of the plane.

Theorem (R.Berger 1966): The tiling problem of Wang

tiles is undecidable.



Aperiodicity

A tiling is called periodic if it is invariant under some

non-zero translation of the plane.

A Wang tile set that admits a periodic tiling also admits a

doubly periodic tiling: a tiling with a horizontal and a vertical

period:
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Conjecture by H. Wang in the 50’s:

T admits tiling =⇒ T admits periodic tiling.

R. Berger: conjecture is false:

There is a tile set that admits a tiling but does not admit

periodic tilings.

Such tile sets are called aperiodic.

Berger’s aperiodic tile set contained 20,426 tiles.

In this talk: 14 tiles, simple proof of aperiodicity.

Smallest possible: 11 tiles (by E. Jeandel and M. Rao)



Remark: If Wang’s conjecture had been true then the tiling

problem would be decidable:

Try all possible tilings of larger and larger rectangles until

either

(a) a rectangle is found that can not be tiled (so no

tiling of the plane exists), or

(b) a tiling of a rectangle is found that can be

repeated periodically to form a periodic tiling.

Only aperiodic tile sets fail to reach either (a) or (b). . .



Remark: If Wang’s conjecture had been true then the tiling

problem would be decidable:

Try all possible tilings of larger and larger rectangles until

either

(a) a rectangle is found that can not be tiled (so no

tiling of the plane exists), or

(b) a tiling of a rectangle is found that can be

repeated periodically to form a periodic tiling.

Only aperiodic tile sets fail to reach either (a) or (b). . .

Any undecidability proof of the tiling problem must contain

(explicitly or implicitly) a construction of an aperiodic tile set.



14 tile aperiodic set

The colors in our Wang tiles are real numbers, for example
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14 tile aperiodic set

The colors in our Wang tiles are real numbers, for example

1
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0 -1 00

We say that tile n

s

ew

multiplies by number q ∈ R if

qn+ w = s+ e.

(The ”input” n comes from the north, and the ”carry-in” w

from the west is added to the product qn. The result is split

between the ”output” s to the south and the ”carry-out” e

to the east.)



14 tile aperiodic set

The colors in our Wang tiles are real numbers, for example

1

0-1

2

-1

1

11

-1

2

0 1

0 -1 00

We say that tile n

s

ew

multiplies by number q ∈ R if

qn+ w = s+ e.

The four sample tiles above all multiply by q = 2.



Suppose we have a correctly tiled horizontal segment where all

tiles multiply by the same q.

s

ew
1

2 3 k

n n n n

s s s

1 2 3 k

k

1



Suppose we have a correctly tiled horizontal segment where all

tiles multiply by the same q.
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Adding up

qn1 + w1 = s1 + e1

qn2 + w2 = s2 + e2
...

qnk + wk = sk + ek,

taking into account that ei = wi+1 gives

q(n1 + n2 + . . .+ nk) +w1 = (s1 + s2 + . . .+ sk) + ek.



Suppose we have a correctly tiled horizontal segment where all

tiles multiply by the same q.

s

ew
1

2 3 k

n n n n

s s s
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If, moreover, the segment begins and ends in the same color

(w1 = ek) then

q(n1 + n2 + . . .+ nk) = (s1 + s2 + . . .+ sk).



For example, our sample tiles that multiply by q = 2 admit the

segment
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The sum of the bottom labels is twice the sum of the top

labels.



1

0-1

2

-1

1

11

-1

2

0 1

0 -1 00

2

1

0*

2

1

0*

2

1

2

2

2

2

0*

1

1

0*

1

1

0*

1

1

1

0

1

0

0*

1
3

1
3

1
3

1
3

1
3

1
3

1
3

- 1
3

-

1
3

-1
3

-

2
3

2
3

2
3

2
3

An aperiodic 14 tile set: four tiles that all multiply by 2, and

10 tiles that all multiply by 2
3 .
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Let us call these two tile sets T2 and T2/3. Vertical colors are

disjoint, so every horizontal row of a tiling comes entirely from

one of the two sets.



No periodic tiling exists.

Suppose the contrary: A rectangle can be tiled whose top and

bottom rows match and left and right sides match.
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Denote by ni the sum of the numbers on the i’th row. The

tiles of the i’th row multiply by qi ∈ {2, 2
3}.
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Suppose the contrary: A rectangle can be tiled whose top and
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Denote by ni the sum of the numbers on the i’th row. The

tiles of the i’th row multiply by qi ∈ {2, 2
3}.

Then ni+1 = qini, for all i.
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No periodic tiling exists.

Suppose the contrary: A rectangle can be tiled whose top and

bottom rows match and left and right sides match.

n
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n

So we have n1q1q2q3 . . . qk = nk+1 = n1.

Clearly n1 > 0, so we have q1q2q3 . . . qk = 1.

But this is not possible since 2 and 3 are relatively prime: No

product of numbers 2 and 2
3 can equal 1.



Next step: Proof that a valid tiling of the plane exists.

We use sturmian or balanced representations of real

numbers as bi-infinite sequences of two closest integers.

The representation of any α ∈ R is the sequence B(α) whose

k’th element is

Bk(α) = ⌊kα⌋ − ⌊(k − 1)α⌋.
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Next step: Proof that a valid tiling of the plane exists.

We use sturmian or balanced representations of real

numbers as bi-infinite sequences of two closest integers.

The representation of any α ∈ R is the sequence B(α) whose

k’th element is

Bk(α) = ⌊kα⌋ − ⌊(k − 1)α⌋.

For example,

B( 13 ) = . . . 0 0 1 0 0 1 0 0 1 0 0 1 . . .

B( 75 ) = . . . 1 1 2 1 2 1 1 2 1 2 1 1 . . .

B(
√
2) = . . . 1 1 2 1 2 1 2 1 1 2 1 1 . . .



1

0-1

2

-1

1

11

-1

2

0 1

0 -1 00

The first tile set T2 admits a tiling of every infinite horizontal

strip whose top and bottom labels read B(α) and B(2α), for

all α ∈ R satisfying

0 ≤ α ≤ 1, and

1 ≤ 2α ≤ 2.

For example, with α = 3
4 :
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The first tile set T2 admits a tiling of every infinite horizontal

strip whose top and bottom labels read B(α) and B(2α), for

all α ∈ R satisfying

0 ≤ α ≤ 1, and

1 ≤ 2α ≤ 2.







⇐⇒ 1

2
≤ α ≤ 1

For example, with α = 3
4 :
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This is guaranteed by including in the tile set for every
1
2 ≤ α ≤ 1 and every k ∈ Z the following tile

2⌊(k − 1)α⌋ − ⌊2(k − 1)α⌋ 2⌊kα⌋ − ⌊2kα⌋

Bk(2α)

Bk(α)
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This is guaranteed by including in the tile set for every
1
2 ≤ α ≤ 1 and every k ∈ Z the following tile

2⌊(k − 1)α⌋ − ⌊2(k − 1)α⌋ 2⌊kα⌋ − ⌊2kα⌋

Bk(2α)

Bk(α)

(1) For fixed α the tiles for consecutive k ∈ Z match so that a

horizontal row can be formed whose top and bottom labels

read the balanced representations of α and 2α, respectively.
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This is guaranteed by including in the tile set for every
1
2 ≤ α ≤ 1 and every k ∈ Z the following tile

2⌊(k − 1)α⌋ − ⌊2(k − 1)α⌋ 2⌊kα⌋ − ⌊2kα⌋

Bk(2α)

Bk(α)

(2) A direct calculation shows that the tile multiplies by 2,

that is,

2n+ w = s+ e.



1

0-1

2

-1

1

11

-1

2

0 1

0 -1 00

This is guaranteed by including in the tile set for every
1
2 ≤ α ≤ 1 and every k ∈ Z the following tile

2⌊(k − 1)α⌋ − ⌊2(k − 1)α⌋ 2⌊kα⌋ − ⌊2kα⌋

Bk(2α)

Bk(α)

(3) There are only finitely many such tiles, even though there

are infinitely many k ∈ Z and α. These are the four tiles in T2.
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The four tiles can be also interpreted as edges of a finite

state transducer whose states are the vertical colors and

input/output symbols of transitions are the top and the

bottom colors:

-1 0

1/1

0/1

1/21/2

A tiling of an infinite horizontal strip is a bi-infinite path

whose input symbols and output symbols read the top and

bottom colors of the strip. We have enough transitions to

allow the transducer to convert B(α) into B(2α).



An analogous construction can be done for any rational

multiplier q. We can construct the following tiles for all

k ∈ Z and all α in the domain interval:

q⌊(k − 1)α⌋ − ⌊q(k − 1)α⌋ q⌊kα⌋ − ⌊qkα⌋

Bk(qα)

Bk(α)

The tiles multiply by q, and they admit a tiling of a horizontal

strip whose top and bottom labels read B(α) and B(qα).



An analogous construction can be done for any rational

multiplier q. We can construct the following tiles for all

k ∈ Z and all α in the domain interval:

q⌊(k − 1)α⌋ − ⌊q(k − 1)α⌋ q⌊kα⌋ − ⌊qkα⌋

Bk(qα)

Bk(α)

The tiles multiply by q, and they admit a tiling of a horizontal

strip whose top and bottom labels read B(α) and B(qα).

Our second tile set T2/3 was constructed in this way for

q = 2
3 and interval 1 ≤ α ≤ 2.
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The tiles admit valid tilings of the plane that simulate

iterations of the piecewise linear dynamical system

f : [
1

2
, 2] −→ [

1

2
, 2]

where

f(x) =







2x, if x ≤ 1, and

2
3x, if x > 1.

Balanced representation of f(x)

Balanced representation of x
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The tiles admit valid tilings of the plane that simulate

iterations of the piecewise linear dynamical system

f : [
1

2
, 2] −→ [

1

2
, 2]

where

f(x) =







2x, if x ≤ 1, and

2
3x, if x > 1.

Balanced representation of x

Balanced representation of f  (x)4



Undecidability of the tiling problem

Similar construction can be effectively carried out for any

piecewise linear function on a union of finite intervals of R, as

long as the multiplications are with rational numbers q.



Undecidability of the tiling problem

Similar construction can be effectively carried out for any

piecewise linear function on a union of finite intervals of R, as

long as the multiplications are with rational numbers q.

In order to prove undecidability results concerning tilings

we want to simulate more complex dynamical systems that can

carry out Turing computations.

We generalize the construction in two ways:

• from linear maps to affine maps, and

• from R to R
2, (or Rd for any d).



Immortality of piecewise affine maps

Consider a system of finitely many pairs (Ui, fi) where

• Ui are disjoint unit squares of the plane with integer

corners,

• fi are affine transformations with rational coefficients.

Square Ui serves as the domain where fi may be applied.



The system determines a function

f : D −→ R
2

whose domain is

D =
⋃

i

Ui

and

f(~x) = fi(~x) for all ~x ∈ Ui.



The orbit of ~x ∈ D is the iteration of f starting at point ~x.

The iteration can be continued as long as the point remains in

the domain D.
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The orbit of ~x ∈ D is the iteration of f starting at point ~x.

The iteration can be continued as long as the point remains in

the domain D.



But if the point goes outside of the domain, the system halts.

If the iteration always halts, regardless of the starting point ~x,

the system is mortal. Otherwise it is immortal: there is an

immortal point ~x ∈ D from which a non-halting orbit begins.



Immortality problem: Is a given system of affine maps

immortal?

Proposition: The immortality problem is undecidable.



Immortality problem: Is a given system of affine maps

immortal?

Proposition: The immortality problem is undecidable.

Follows from a standard simulation of Turing machines by

two-dimensional piecewise affine transformations, and from:

Theorem (Hooper 1966): It is undecidable if a given

Turing machine has any immortal configurations.



Next: We effectively construct Wang tiles that are forced to

simulate iterations of given piecewise affine maps.

Then the undecidability of the tiling problem follows: a valid

tiling exists if and only if the dynamical system has an infinite

orbit (which is undecidable).



Next: We effectively construct Wang tiles that are forced to

simulate iterations of given piecewise affine maps.

Then the undecidability of the tiling problem follows: a valid

tiling exists if and only if the dynamical system has an infinite

orbit (which is undecidable).

The construction is very similar to the earlier construction of

14 aperiodic tiles.



The colors in our Wang tiles are elements of R2.

Let f : R2 −→ R
2 be an affine function. We say that tile

n

w

s

e

computes function f if

f(~n) + ~w = ~s+ ~e.



Suppose we have a correctly tiled horizontal segment of length

n where all tiles compute the same f .

Average =

e

s

n

w

Average =

It easily follows that

f(~n) +
1

n
~w = ~s+

1

n
~e,

where ~n and ~s are the averages of the top and the bottom

labels.



Suppose we have a correctly tiled horizontal segment of length

n where all tiles compute the same f .

Average =

e

s

n

w

Average =

It easily follows that

f(~n) +
1

n
~w = ~s+

1

n
~e,

where ~n and ~s are the averages of the top and the bottom

labels.

As the segment is made longer, the effect of the carry-in and

carry-out labels ~w and ~e vanish.



Consider a system of affine maps fi and unit squares Ui.

For each i we construct a set Ti of Wang tiles

• that compute function fi, and

• whose top edge labels ~n are in Ui.

We also make sure that tiles of different sets Ti and Tj cannot

be mixed on any horizontal row of tiles. Let

T =
⋃

i

Ti.



Claim: If such T admits a valid tiling then the system of

affine maps has an immortal point.

Indeed: An immortal point is obtained as the average of the

top labels on a horizontal row of the tiling. The averages on

subsequent horizontal rows below are the iterates of that point

under the dynamical system.



Claim: If such T admits a valid tiling then the system of

affine maps has an immortal point.

Indeed: An immortal point is obtained as the average of the

top labels on a horizontal row of the tiling. The averages on

subsequent horizontal rows below are the iterates of that point

under the dynamical system.

Small technicality: If the average over an infinite horizontal

row does not exist then we take an accumulation point of

averages of finite segments instead. . . this always exists.



We still have to detail how to choose the tiles so that also the

converse is true: any immortal orbit of the affine maps gives

a valid tiling.



The tile set corresponding to a rational affine map

fi(~x) = M~x+~b

and its domain square Ui consists of all tiles

fi(⌊(k − 1)~x⌋)
−⌊(k − 1)fi(~x)⌋

+(k − 1)~b

fi(⌊k~x⌋)
−⌊kfi(~x)⌋

+k~b

Bk(fi(~x))

Bk(~x)

where k ∈ Z and ~x ∈ Ui.



fi(⌊(k − 1)~x⌋)
−⌊(k − 1)fi(~x)⌋

+(k − 1)~b

fi(⌊k~x⌋)
−⌊kfi(~x)⌋

+k~b

Bk(fi(~x))

Bk(~x)

where k ∈ Z and ~x ∈ Ui.

(1) For fixed ~x ∈ Ui the tiles for consecutive k ∈ Z match so

that a horizontal row can be formed whose top and bottom

labels read the balanced representations of ~x and fi(~x),

respectively.



fi(⌊(k − 1)~x⌋)
−⌊(k − 1)fi(~x)⌋

+(k − 1)~b

fi(⌊k~x⌋)
−⌊kfi(~x)⌋

+k~b

Bk(fi(~x))

Bk(~x)

where k ∈ Z and ~x ∈ Ui.

(2) A direct calculation shows that the tile computes function

fi, that is,

fi(~n) + ~w = ~s+ ~e.



fi(⌊(k − 1)~x⌋)
−⌊(k − 1)fi(~x)⌋

+(k − 1)~b

fi(⌊k~x⌋)
−⌊kfi(~x)⌋

+k~b

Bk(fi(~x))

Bk(~x)

where k ∈ Z and ~x ∈ Ui.

(3) Because fi is rational, there are only finitely many such

tiles (even though there are infinitely many k ∈ Z and ~x ∈ Ui).

The tiles can be effectively constructed.



If there is an infinite orbit then a tiling exists where the labels

of the horizontal rows read the balanced representations of the

points of the orbit:

Balanced representation of f(x)

Balanced representation of x
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If there is an infinite orbit then a tiling exists where the labels

of the horizontal rows read the balanced representations of the

points of the orbit:

3Balanced representation of f  (x)

Balanced representation of x



If there is an infinite orbit then a tiling exists where the labels

of the horizontal rows read the balanced representations of the

points of the orbit:

Balanced representation of x

Balanced representation of f  (x)4



Conclusion: the tile set admits a tiling of the plane if and

only if the system of affine maps is immortal. Undecidability

of the tiling problem follows from the undecidability of the

immortality problem.



The hyperbolic plane

The technique works well also in the hyperbolic plane.



The role of the Euclidean Wang square tile will be played by a

hyperbolic pentagon.



The pentagons can tile a ”horizontal row”.



”Beneath” each pentagon fits two identical pentagons.



Infinitely many ”horizontal rows” fill the lower part of the half

plane.



Similarily the upper part can be filled. We see that the

pentagons tile the hyperbolic plane (in an uncountable number

of different ways, in fact.)



On the hyperbolic plane Wang tiles are pentagons with colored

edges. Pentagons may be placed adjacent if the edge colors

match.



A given set of pentagons tiles the hyperbolic plane if a tiling

exists where the color constraint is everywhere satisfied.



The hyperbolic tiling problem asks whether a given finite

collection of colored pentagons admits a valid tiling.

Theorem. The tiling problem of the hyperbolic plane is

undecidable.



We say that pentagon

r

n

ew

l

computes the affine transformation f : R2 −→ R
2 if

f(~n) + ~w =
~l + ~r

2
+ ~e.

(Difference to Euclidean Wang tiles: The ”output” is now

divided between ~l and ~r.)



s

w e

Average = n

Average =

In a horizontal segment of length n where all tiles compute the

same f holds

f(~n) +
1

n
~w = ~s+

1

n
~e,

where ~n and ~s are the averages of the top and the bottom

labels.



For a given system of affine maps fi and unit squares Ui we

construct for each i a set Ti of pentagons

• that compute function fi, and

• whose top edge labels ~n are in Ui.

It follows, exactly as in the Euclidean case, that valid tilings

correspond to iterations of the piecewise affine maps.



The tiles constructed admit a valid tiling iff the system of

affine maps has an immortal point:

Balanced representation of f(x)

Balanced representation of xBalanced representation of x



The tiles constructed admit a valid tiling iff the system of

affine maps has an immortal point:

Balanced representation of xBalanced representation of x

Balanced representation of f  (x)2



The tiles constructed admit a valid tiling iff the system of

affine maps has an immortal point:

Balanced representation of xBalanced representation of x

Balanced representation of f  (x)3



The tiles constructed admit a valid tiling iff the system of

affine maps has an immortal point:

Balanced representation of xBalanced representation of x

Balanced representation of f  (x)4
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Sturmian representations of real numbers admit concise

simulations of piecewise affine maps on 2D tilings.

=⇒ small aperiodic sets of Wang tiles

=⇒ simple undecidability proof of the tiling problem

=⇒ technique scales to the hyperbolic plane
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Conclusion

Sturmian representations of real numbers admit concise

simulations of piecewise affine maps on 2D tilings.

=⇒ small aperiodic sets of Wang tiles

=⇒ simple undecidability proof of the tiling problem

=⇒ technique scales to the hyperbolic plane

Can we use the idea in other setups ? Tilings on other Cayley

graphs ?

On which groups is the tiling problem decidable ?

• Decidable on virtually free groups.

• Undecidable on Baumslag-Solitar groups (JK,

N.Aubrun).



Cellular Automata (CA): Introduction

Cellular automata are an old model of computation. They

are investigated

• in physics as discrete models of physical systems,

• in computer science as models of massively parallel

computation under the realistic constraints of locality and

uniformity,

• in mathematics as endomorphisms of the full shift in the

context of symbolic dynamics.



Cellular automata possess several fundamental properties of

the physical world: they are

• massively parallel,

• homogeneous in time and space,

• all interactions are local,

• time reversibility and conservation laws can be

obtained by choosing the local update rule properly.



Example: the Game-of-Life by John Conway.

• Infinite checker-board whose squares (=cells) are colored

black (=alive) or white (=dead).

• At each discrete time step each cell counts the number of

living cells surrounding it, and based on this number

determines its new state.

• All cells change their state simultaneously.



The local update rule asks each cell to check the present states

of the eight surrounding cells.

• If the cell is alive then it stays alive (survives) iff it has

two or three live neighbors. Otherwise it dies of loneliness

or overcrowding.

• If the cell is dead then it becomes alive iff it has exactly

three living neighbors.
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of the eight surrounding cells.
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of the eight surrounding cells.
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The local update rule asks each cell to check the present states

of the eight surrounding cells.

• If the cell is alive then it stays alive (survives) iff it has

two or three live neighbors. Otherwise it dies of loneliness

or overcrowding.

• If the cell is dead then it becomes alive iff it has exactly

three living neighbors.
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A typical snapshot of a time evolution in Game-of-Life:

Initial uniformly random configuration.



A typical snapshot of a time evolution in Game-of-Life:

The next generation after all cells applied the update rule.



A typical snapshot of a time evolution in Game-of-Life:

Generation 10



A typical snapshot of a time evolution in Game-of-Life:

Generation 100



A typical snapshot of a time evolution in Game-of-Life:

GOL is a computationally universal two-dimensional CA.



Another famous universal CA: rule 110 by S.Wolfram.

A one-dimensional CA with binary state set {0, 1}, i.e. a
two-way infinite sequence of 0’s and 1’s.

Each cell is updated based on its old state and the states of its

left and right neighbors as follows:

111 −→ 0

110 −→ 1

101 −→ 1

100 −→ 0

011 −→ 1

010 −→ 1

001 −→ 1

000 −→ 0



Another famous universal CA: rule 110 by S.Wolfram.

A one-dimensional CA with binary state set {0, 1}, i.e. a
two-way infinite sequence of 0’s and 1’s.

Each cell is updated based on its old state and the states of its

left and right neighbors as follows:

111 −→ 0

110 −→ 1

101 −→ 1

100 −→ 0

011 −→ 1

010 −→ 1

001 −→ 1

000 −→ 0

110 is the Wolfram number of this CA rule.



Space-time diagram is a pictorial representation of a time

evolution in one-dimensional CA, where space and time are

represented by the horizontal and vertical direction:



Game-of-Life and Rule 110 are irreversible: Configurations

may have several pre-images.



Two-dimensional Q2R Ising model by G.Vichniac (1984) is an

example of a time-reversible cellular automaton.

Each cell has a spin that is directed either up or down. The

direction of a spin is swapped if and only if among the four

immediate neighbors there are exactly two cells with spin up

and two cells with spin down:



The twist that makes the Q2R rule reversible: Color the space

as a checker-board. On even time steps only update the spins

of the white cells and on odd time steps update the spins of

the black cells.
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The twist that makes the Q2R rule reversible: Color the space
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the black cells.



The twist that makes the Q2R rule reversible: Color the space

as a checker-board. On even time steps only update the spins

of the white cells and on odd time steps update the spins of

the black cells.



Q2R is reversible: The same rule (applied again on squares of

the same color) reconstructs the previous generation.

Q2R rule also exhibits a local conservation law: The number

of neighbors with opposite spins remains constant over time.



Evolution of Q2R from an uneven random distribution of spins:

Initial random configuration with 8% spins up.



Evolution of Q2R from an uneven random distribution of spins:

One million steps. The length of the B/W boundary is invariant.



General definition of d-dimensional CA

• Finite state set S.

• Configurations are elements of SZ
d

, i.e., functions

Z
d −→ S assigning states to cells,

• Neighborhood N ⊆ Z
d is a finite set of relative offsets to

neighbors from each cell.

• The neighbors of a cell at location ~x ∈ Z
d are the cells at

locations ~x+ ~n for all ~n ∈ N .



Typical two-dimensional neighborhoods:

c c

Von Neumann Moore

neighborhood neighborhood

{(0, 0), (±1, 0), (0,±1)} {−1, 0, 1} × {−1, 0, 1}



The local rule is a function

f : SN −→ S

where N is the neighborhood, providing the new state

f(p) ∈ S based on the pattern p ∈ SN that a cell sees in its

neighbors.



The local rule is a function

f : SN −→ S

where N is the neighborhood, providing the new state

f(p) ∈ S based on the pattern p ∈ SN that a cell sees in its

neighbors.

The global dynamics of the CA: Configuration c becomes in

one time step the configuration e where, for all ~x ∈ Z
d,

e(~x) = f(c~x+N ).

The transformation

G : SZ
d −→ SZ

d

that maps c 7→ e is the CA function.



A CA is

• injective if G is one-to-one,

• surjective if G is onto,

• bijective if G is both one-to-one and onto.



A CA is

• injective if G is one-to-one,

• surjective if G is onto,

• bijective if G is both one-to-one and onto.

A CA G is a reversible (RCA) if there is another CA

function F that is its inverse, i.e.

G ◦ F = F ◦G = identity function.

RCA G and F are called the inverse automata of each other.



Curtis-Hedlund-Lyndon -theorem

It is convenient to endow SZ
d

with the usual metric to

measures distances of configurations: For all c 6= e,

d(c, e) = 2−n

where

n = min{||~x|| | c(~x) 6= e(~x)}
is the distance from the origin to the closest cell where c and e

differ.

Two configurations are close to each other if one needs

to look far to see a difference in them.

The metric induces a compact topology on SZ
d

.



All cellular automata are continuous transformations

SZ
d −→ SZ

d

under our metric.

Indeed, locality of the update rule means that configurations

that are close to each other have images close to each other.



The translation τ determined by vector ~r ∈ Z
d is the

transformation

SZ
d −→ SZ

d

that maps c 7→ e where

e(~x) = c(~x− ~r) for all ~x ∈ Z
d.



The translation τ determined by vector ~r ∈ Z
d is the

transformation

SZ
d −→ SZ

d

that maps c 7→ e where

e(~x) = c(~x− ~r) for all ~x ∈ Z
d.

Since all cells of a CA use the same local rule, the CA

commutes with all translations:

G ◦ τ = τ ◦G.



We have seen that all CA are continuous, translation

commuting maps SZ
d −→ SZ

d

.

The Curtis-Hedlund- Lyndon theorem from 1969 states

that also the converse is true:

Theorem: A function G : SZ
d −→ SZ

d

is a CA function if and

only if

(i) G is continuous, and

(ii) G commutes with translations.



From the Curtis-Hedlund-Lyndon -theorem we get

Corollary: A cellular automaton G is reversible if and only if

it is bijective.



From the Curtis-Hedlund-Lyndon -theorem we get

Corollary: A cellular automaton G is reversible if and only if

it is bijective.

Proof: =⇒ is trivial.

⇐=: Suppose that G is a bijective CA function. Then G has

an inverse function G−1 that clearly commutes with the shifts.

The inverse function G−1 is also continuous because the space

SZ
d

is compact. It now follows from the Curtis-Hedlund-

Lyndon theorem that G−1 is a cellular automaton.



From the Curtis-Hedlund-Lyndon -theorem we get

Corollary: A cellular automaton G is reversible if and only if

it is bijective.

The point of the corollary is that in bijective CA each cell

can determine its previous state by looking at the current

states in some bounded neighborhood around them.



Some symbolic dynamics terminology:

• The set SZ
d

(together with translations) is the

d-dimensional full shift.

• A subset of SZ
d

defined by forbidding some finite pattern

is a subshift. These are precisely the topologically closed,

translation invariant subsets of SZ
d

.

• Cellular automata are the endomorphisms of the full shift.



Garden-Of-Eden and orphans

Configurations that do not have a pre-image are called

Garden-Of-Eden -configurations. Only non-surjective CA

have GOE configurations.

A finite pattern consists of a finite domain D ⊆ Z
d and an

assignment

p : D −→ S

of states.

Finite pattern is called an orphan for CA G if every

configuration containing the pattern is a GOE.



From the compactness of SZ
d

we directly get:

Proposition. Every GOE configuration contains an orphan

pattern.

Non-surjectivity is hence equivalent to the existence of

orphans.



Balance in surjective CA

All surjective CA have balanced local rules: for every a ∈ S

∣

∣f−1(a)
∣

∣ = |S|n−1.



Balance in surjective CA

All surjective CA have balanced local rules: for every a ∈ S

∣

∣f−1(a)
∣

∣ = |S|n−1.

Indeed, consider a non-balanced local rule such as rule 110

where five contexts give new state 1 while only three contexts

give state 0:

111 −→ 0

110 −→ 1

101 −→ 1

100 −→ 0

011 −→ 1

010 −→ 1

001 −→ 1

000 −→ 0



Consider finite patterns where state 0 appears in every third

position. There are 22(k−1) = 4k−1 such patterns where k is

the number of 0’s.

0 0 0 0



Consider finite patterns where state 0 appears in every third

position. There are 22(k−1) = 4k−1 such patterns where k is

the number of 0’s.

0 0 0 0

A pre-image of such a pattern must consist of k segments of

length three, each of which is mapped to 0 by the local rule.

There are 3k choices.

As for large values of k we have 3k < 4k−1, there are fewer

choices for the red cells than for the blue ones. Hence some

pattern has no pre-image and it must be an orphan.



One can also verify directly that pattern

01010

is an orphan of rule 110. It is the shortest orphan.



Balance of the local rule is not sufficient for surjectivity. For

example, the majority CA (Wolfram number 232) is a

counter example. The local rule

f(a, b, c) = 1 if and only if a+ b+ c ≥ 2

is clearly balanced, but 01001 is an orphan.



The balance property of surjective CA generalizes to finite

patterns of arbitrary shape:

Theorem: Let G be surjective. Let M,D ⊆ Z
d be finite

domains such that D contains the neighborhood of M . Then

every finite pattern with domain M has the same number

n|D|−|M |

of pre-images in domain D, where n is the number of states.

D M



The balance property of surjective CA generalizes to finite

patterns of arbitrary shape:

Theorem: Let G be surjective. Let M,D ⊆ Z
d be finite

domains such that D contains the neighborhood of M . Then

every finite pattern with domain M has the same number

n|D|−|M |

of pre-images in domain D, where n is the number of states.

The balance property means that the uniform probability

measure is invariant for surjective CA. (Uniform randomness

is preserved by surjective CA.)



Garden-Of-Eden -theorem

Let us call configurations c1 and c2 asymptotic if the set

diff (c1, c2) = {~n ∈ Z
d | c1(~n) 6= c2(~n) }

of positions where c1 and c2 differ is finite.

A CA is called pre-injective if any asymptotic c1 6= c2 satisfy

G(c1) 6= G(c2).



The Garden-Of-Eden -theorem by Moore (1962) and

Myhill (1963) connects surjectivity with pre-injectivity.

Theorem: CA G is surjective if and only if it is pre-injective.



The Garden-Of-Eden -theorem by Moore (1962) and

Myhill (1963) connects surjectivity with pre-injectivity.

Theorem: CA G is surjective if and only if it is pre-injective.

Corollary: Every injective CA is also surjective. Injectivity,

bijectivity and reversibility are equivalent concepts.

Proof: If G is injective then it is pre-injective. The claim

follows from the Garden-Of-Eden -theorem.



G injective         G bijective         G reversible

G surjective          G pre-injective



Examples:

The majority rule is not surjective: asymptotic configurations

. . . 0000000 . . . and . . . 0001000 . . .

have the same image, so G is not pre-injective. Pattern

01001

is an orphan.



Examples:

In Game-Of-Life a lonely living cell dies immediately, so G is

not pre-injective. GOL is hence not surjective.



Interestingly, no small orphans are known for Game-Of-Life.

Currently, the smallest known orphan consists of 88 cells (50

life=white, 38 dead=black):

Steven Eker (2017)



Examples:

The Traffic CA is the elementary CA number 226.

111 −→ 1
110 −→ 1
101 −→ 1
100 −→ 0
011 −→ 0
010 −→ 0
001 −→ 1
000 −→ 0

The local rule replaces pattern 01 by pattern 10.



111 −→ 1

110 −→ 1

101 −→ 1

100 −→ 0

011 −→ 0

010 −→ 0

001 −→ 1

000 −→ 0



111 −→ 1

110 −→ 1

101 −→ 1

100 −→ 0

011 −→ 0

010 −→ 0

001 −→ 1

000 −→ 0



111 −→ 1

110 −→ 1

101 −→ 1

100 −→ 0

011 −→ 0

010 −→ 0

001 −→ 1

000 −→ 0



111 −→ 1

110 −→ 1

101 −→ 1

100 −→ 0

011 −→ 0

010 −→ 0

001 −→ 1

000 −→ 0



The local rule is balanced. However, there are two asymptotic

configurations with the same successor:

and hence traffic CA is not surjective.



There is an orphan of size four:



G injective         G bijective         G reversible

G surjective          G pre-injective





The xor-CA is the binary state CA with neighborhood (0, 1)

and local rule

f(a, b) = a+ b (mod 2).

0 0000 0 0 0 01 1 1 1 1 1 1



The xor-CA is the binary state CA with neighborhood (0, 1)

and local rule

f(a, b) = a+ b (mod 2).

In the xor-CA every configuration has exactly two pre-images,

so G is surjective but not injective:

0 0000 0 0 0 01 1 1 1 1 1 1

One can freely choose one value in the pre-image, after which

all remaining states are uniquely determined by the

left-permutativity and the right-permutativity of xor.
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so G is surjective but not injective:
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The xor-CA is the binary state CA with neighborhood (0, 1)

and local rule

f(a, b) = a+ b (mod 2).

In the xor-CA every configuration has exactly two pre-images,

so G is surjective but not injective:

0 0000 0 0 0 01 1 1 1 1 1 1

0 01
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all remaining states are uniquely determined by the

left-permutativity and the right-permutativity of xor.



The xor-CA is the binary state CA with neighborhood (0, 1)

and local rule

f(a, b) = a+ b (mod 2).

In the xor-CA every configuration has exactly two pre-images,

so G is surjective but not injective:

0 0000 0 0 0 01 1 1 1 1 1 1

0 01 00 0 0 0 1

One can freely choose one value in the pre-image, after which

all remaining states are uniquely determined by the

left-permutativity and the right-permutativity of xor.



The xor-CA is the binary state CA with neighborhood (0, 1)

and local rule

f(a, b) = a+ b (mod 2).

In the xor-CA every configuration has exactly two pre-images,

so G is surjective but not injective:

0 0000 0 0 0 01 1 1 1 1 1 1

0 01 00 0 0 0 10

One can freely choose one value in the pre-image, after which

all remaining states are uniquely determined by the

left-permutativity and the right-permutativity of xor.



The xor-CA is the binary state CA with neighborhood (0, 1)

and local rule

f(a, b) = a+ b (mod 2).

In the xor-CA every configuration has exactly two pre-images,

so G is surjective but not injective:

0 0000 0 0 0 01 1 1 1 1 1 1

0 01 00 0 0 0 10111001

One can freely choose one value in the pre-image, after which

all remaining states are uniquely determined by the

left-permutativity and the right-permutativity of xor.



Periodic configurations

It is obviously not possible to simulate CA functions on

arbitrary infinite configurations, but one has to limit the

attention to some subset of SZ
d

.

We often consider the action on periodic configurations.



Periodic configurations

It is obviously not possible to simulate CA functions on

arbitrary infinite configurations, but one has to limit the

attention to some subset of SZ
d

.

We often consider the action on periodic configurations.

Cellular automata preserve periods, so periodic configurations

are mapped to periodic configurations.

The use of periodic configurations is usually termed periodic

boundary conditions.

Periodic configurations are dense in the metric space SZ
d

.



Surjectivity and injectivity of GP

Let GP denote the restriction of cellular automaton G on

(fully) periodic configurations.

Implications

G injective =⇒ GP injective

GP surjective =⇒ G surjective

are easy. (Second one uses denseness of periodic configurations

in SZ
d

.)



We also have

GP injective =⇒ GP surjective



We also have

GP injective =⇒ GP surjective

Indeed, fix any d linearly independent periods, and let

A ⊆ SZ
d

be the set of configurations with these periods. Then

• A is finite,

• G is injective on A,

• G(A) ⊆ A.

We conclude that G(A) = A, and every periodic configuration

has a periodic pre-image.





Here we get the first dimension sensitive property. The

following equivalences are only known to hold among

one-dimensional CA:

G injective ⇐⇒ GP injective

G surjective ⇐⇒ GP surjective



Here we get the first dimension sensitive property. The

following equivalences are only known to hold among

one-dimensional CA:

G injective ⇐⇒ GP injective

G surjective ⇐⇒ GP surjective

• The first equivalence is not true among two-dimensional

CA: Later we’ll see a counter example Snake-XOR.

• It is not known whether the second equivalence is true in

2D.



Only in 1D



In 2D



We have two proofs that injective CA are surjective:

G injective =⇒ G pre-injective =⇒ G surjective

G injective =⇒ GP injective =⇒ GP surjective =⇒ G surjective



We have two proofs that injective CA are surjective:

G injective =⇒ G pre-injective =⇒ G surjective

G injective =⇒ GP injective =⇒ GP surjective =⇒ G surjective

It is good to have both implication chains available, if one

wants to generalize results to cellular automata whose

underlying grid is not Zd but some other group.

• The first chain generalizes to all amenable groups.

• The second chain generalizes to residually finite groups.

A group is called surjunctive if every injective CA on the

group is also surjective. It is not known if all groups are

surjunctive.



From tiles to cellular automata

Happened so far:

A B C D

The tiling problem (or the Domino problem): Does a

given Wang tile set admit a tiling of the plane?

Theorem (R.Berger 1966): The tiling problem of Wang

tiles is undecidable.



Valid tilings form a subshift (of finite type):

topologically closed, translation invariant set,

defined by a finite number of forbidden local patterns.

Cellular automata:

continuous, translation commuting maps.

Wang tilings are ”static” versions of ”dynamic” 2D cellular

automata

=⇒ undecidability results for 2D CA.



Example: It is undecidable whether a given two-dimensional

CA G has any fixed point configurations.



Example: It is undecidable whether a given two-dimensional

CA G has any fixed point configurations.

Proof: Reduction from the tiling problem.

For any given Wang tile set T (with at least two tiles),

construct a two-dimensional CA with

• state set T ,

• the von Neumann -neighborhood,

• the local update rule that keeps a tile unchanged if and

only if its colors match with the neighboring tiles.

Trivially, G(c) = c if and only if c is a valid tiling.



Example: It is undecidable whether a given two-dimensional

CA G has any fixed point configurations.

Proof: Reduction from the tiling problem.

For any given Wang tile set T (with at least two tiles),

construct a two-dimensional CA with

• state set T ,

• the von Neumann -neighborhood,

• the local update rule that keeps a tile unchanged if and

only if its colors match with the neighboring tiles.

Trivially, G(c) = c if and only if c is a valid tiling.

Note: For one-dimensional CA it is easily decidable whether

fixed points exist.



More interesting reduction: A CA is called nilpotent if all

configurations eventually evolve into a fixed quiescent (=all

states in same ground state q) configuration.

Observation: In a nilpotent CA all configurations must

become quiescent within some uniformly bounded time n.



More interesting reduction: A CA is called nilpotent if all

configurations eventually evolve into a fixed quiescent (=all

states in same ground state q) configuration.

Observation: In a nilpotent CA all configurations must

become quiescent within some uniformly bounded time n.

Proof: A configuration that contains all finite patterns exists.

It becomes quiescent at some time n =⇒ all configurations are

quiescent at time n.
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Theorem (Culik, Pachl, Yu, 1989): It is undecidable

whether a given two-dimensional CA is nilpotent.

Proof: For any given set T of Wang tiles we construct a

two-dimensional CA that is nilpotent if and only if T does not

admit a tiling.
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For tile set T we make the following CA:

• State set is S = T ∪ {q} where q is a new symbol q 6∈ T ,

• Von Neumann neighborhood,

• The local rule keeps state unchanged if all states in the

neighborhood are tiles and the tiling constraint is satisfied.

In all other cases the new state is q.

=⇒ If T admits a tiling c then c is a non-quiescent fixed point

of the CA. So the CA is not nilpotent.

⇐= If T does not admit a valid tiling then every n× n square

contains a tiling error, for some n. State q propagates, so in at

most 2n steps all cells are in state q. The CA is nilpotent.



If we do the previous construction for an aperiodic tile set T

we obtain a two-dimensional CA in which

• every periodic configuration becomes eventually quiescent,

but

• there are some non-periodic fixed points.



What about 1D CA ?

Trick: view space-time diagrams as tilings. This imposes a

determinism constraint on the considered tiles.
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What about 1D CA ?

Trick: view space-time diagrams as tilings. This imposes a

determinism constraint on the considered tiles.

Tile set T is NW-deterministic if no two tiles have identical

colors on their top edges and on their left edges. In a valid

tiling the left and the top neighbor of a tile uniquely determine

the tile.

For example, our sample tile set

A B C D

is NW-deterministic.
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In any valid tiling by NW-deterministic tiles, NE-to-SW

diagonals uniquely determine the next diagonal below them.

The tiles of the next diagonal are determined locally from the

previous diagonal:
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If diagonals are interpreted as configurations of a

one-dimensional CA, valid tilings represent space-time

diagrams.



To make the CA reversible, we may even require that the tile

set is two-way deterministic: it is deterministic both in

NW- and SE-directions.
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To make the CA reversible, we may even require that the tile

set is two-way deterministic: it is deterministic both in

NW- and SE-directions.
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Diagonals determine locally the diagonals below and above.
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Amman’s 16 tile aperiodic tile set

Another example is based on the Robinson’s tiles.
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about the tiling problem?



Ok, there are aperiodic NW-deterministic tile sets. But what

about the tiling problem?

Undecidable!

Theorem. It is undecidable if a given NW-deterministic tile

set admits a valid tiling of the plane.



Undecidability in 1D CA

1D nilpotency is undecidable: For any given

NW-deterministic tile set T we construct a one-dimensional

CA whose
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Undecidability in 1D CA

1D nilpotency is undecidable: For any given

NW-deterministic tile set T we construct a one-dimensional

CA whose

• state set is S = T ∪ {q} where q is a new symbol q 6∈ T ,

• neighborhood is (0, 1),

• local rule f : S2 −→ S is defined as follows:

– f(A,B) = C if the colors match in
A

B
C

– f(A,B) = q if A = q or B = q or no matching tile C

exists.



Claim: The CA is nilpotent if and only if T does not admit a

tiling.



Claim: The CA is nilpotent if and only if T does not admit a

tiling.
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=⇒ If T admits a tiling c then diagonals of c are

configurations that never evolve into the quiescent

configuration. So the CA is not nilpotent.



Claim: The CA is nilpotent if and only if T does not admit a

tiling.

Proof:

=⇒ If T admits a tiling c then diagonals of c are

configurations that never evolve into the quiescent

configuration. So the CA is not nilpotent.

⇐= If T does not admit a tiling then every n× n square

contains a tiling error, for some n. Hence state q is created

inside every segment of length n.

Since q spreads, the whole configuration becomes eventually

quiescent. The CA is nilpotent.



The tiling problem is undecidable for NW-deterministic tile

sets, so

Theorem: It is undecidable whether a given one-dimensional

CA is nilpotent.



The tiling problem is undecidable for NW-deterministic tile

sets, so

Theorem: It is undecidable whether a given one-dimensional

CA is nilpotent.

If we do the previous construction using an aperiodic set then

we have an interesting one-dimensional CA:

• all periodic configurations eventually die, but

• there are non-periodic configurations that never create a

quiescent state in any cell.



We have undecidability also on the two-way deterministic

tile sets.

But even better: Tile set T is four-way deterministic if it is

deterministic in all four directions NW, SW, SE and NE (cf.

bi-reversible automata from yesterday).

Theorem (Lukkarila 2008) The tiling problem is

undecidable among 4-way deterministic tile sets.

This result provides some undecidability results for dynamics

of reversible one-dimensional CA.



Back to 2D CA: Decision problems to determine if a given

2D CA is reversible or surjective.



Snakes
R©

Snakes is a tile set with some interesting (and useful)

properties.

In addition to colored edges, these tiles also have an arrow

printed on them. The arrow is horizontal or vertical and it

points to one of the four neighbors of the tile:

Such tiles with arrows are called directed tiles.



Given a configuration (valid tiling or not!) and a starting

position, the arrows specify a path on the plane. Each position

is followed by the neighboring position indicated by the arrow

of the tile:



Given a configuration (valid tiling or not!) and a starting

position, the arrows specify a path on the plane. Each position

is followed by the neighboring position indicated by the arrow

of the tile:

The path may enter a loop. . .



Given a configuration (valid tiling or not!) and a starting

position, the arrows specify a path on the plane. Each position

is followed by the neighboring position indicated by the arrow

of the tile:

. . . or the path may be infinite and never return to a tile

visited before.



The directed tile set Snakes has the following property: On

any configuration (valid tiling or not) and on any path that

follows the arrows one of the following two things happens:

(1) Either there is a tiling error at a tile of the path,
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The directed tile set Snakes has the following property: On

any configuration (valid tiling or not) and on any path that

follows the arrows one of the following two things happens:

(1) Either there is a tiling error at a tile of the path,

(2) or the path is a plane-filling path, that is, for every positive

integer n there exists an n× n square all of whose positions are

visited by the path.

Note that the tiling may be invalid outside path P , yet the

path is forced to snake through larger and larger squares.

Snakes also has the property that it admits a valid tiling.



The paths that Snakes forces when no tiling error is

encountered have the shape of the well known plane-filling

Hilbert-curve
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Snakes is built by decorating Robinson’s tiles with arrows

(and some additional labels to enforce the plane-filling

property).

Hilbert-curve comes in four orientations, generated by

substitutions



The recursive structures of the Hilbert-curve and the

Robinson’s tiling are consistent.



Applications of Snakes

First application of Snakes: An example of a two-dimensional

CA that is injective on periodic configurations but is not

injective on all configurations.

The Snake XOR CA confirms that in 2D

G injective 6⇐= GP injective.



The state set of the CA is

S = Snakes× {0, 1}.

(Each snake tile is attached a red bit.)

1



The local rule checks whether the tiling is valid at the cell:

• If there is a tiling error, no change in the state.
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The local rule checks whether the tiling is valid at the cell:

• If there is a tiling error, no change in the state.

• If the tiling is valid, the cell is active: the bit of the

neighbor next on the path is XOR’ed to the bit of the cell.
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The local rule checks whether the tiling is valid at the cell:

• If there is a tiling error, no change in the state.

• If the tiling is valid, the cell is active: the bit of the

neighbor next on the path is XOR’ed to the bit of the cell.
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Snake XOR is not injective:

The following two configurations have the same successor: The

Snakes tilings of the configurations form the same valid tiling

of the plane. In one of the configurations all bits are set to 0,

and in the other configuration all bits are 1.

All cells are active because the tilings are correct. This means

that all bits in both configurations become 0. So the two

configurations become identical. The CA is not injective.



Snake XOR is injective on periodic configurations:

Suppose there are different periodic configurations c and d

with the same successor. Since only bits may change, c and d

must have identical Snakes tiles everywhere. So they must

have different bits 0 and 1 in some position ~p1 ∈ Z
2.
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Snake XOR is injective on periodic configurations:

Suppose there are different periodic configurations c and d

with the same successor. Since only bits may change, c and d

must have identical Snakes tiles everywhere. So they must

have different bits 0 and 1 in some position ~p1 ∈ Z
2.

Because c and d have identical successors:

• The cell in position ~p1 must be active, that is, the Snakes

tiling is valid in position ~p1.

• The bits stored in the next position ~p2 (indicated by the

direction) are different in c and d.

Hence we can repeat the reasoning in position ~p2.



The same reasoning can be repeated over and over again. The

positions ~p1, ~p2, ~p3, . . . form a path that follows the arrows on

the tiles. There is no tiling error at any tile on this path.

But this contradicts the fact that the plane filling property of

Snakes guarantees that on periodic configuration every path

encounters a tiling error.



In 2D



Snake XOR also refutes an earlier conjecture that all 2D CA

have either infinite entropy or zero entropy. It has finite but

non-zero topological entropy (T.Meyerovitch).



Second application of Snakes: It is undecidable to determine

if a given two-dimensional CA is reversible.
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Second application of Snakes: It is undecidable to determine

if a given two-dimensional CA is reversible.

The proof is a reduction from the tiling problem, using the tile

set Snakes.

For any given tile set T we construct a CA with the state set

S = T × Snakes× {0, 1}.

Snakes

T

0/1



The local rule is analogous to Snake XOR with the difference

that the correctness of the tiling is checked in both tile layers:

• If there is a tiling error then the cell is inactive.
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The local rule is analogous to Snake XOR with the difference

that the correctness of the tiling is checked in both tile layers:

• If there is a tiling error then the cell is inactive.

• If both tilings are valid, the bit of the neighbor next on the

path is XOR’ed to the bit of the cell.

0

0

0
1

1



The local rule is analogous to Snake XOR with the difference

that the correctness of the tiling is checked in both tile layers:

• If there is a tiling error then the cell is inactive.

• If both tilings are valid, the bit of the neighbor next on the

path is XOR’ed to the bit of the cell.
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We can reason exactly as with Snake XOR:

T admits a tiling ⇐⇒ the CA is not reversible



We can reason exactly as with Snake XOR:

T admits a tiling ⇐⇒ the CA is not reversible

(=⇒) Suppose a valid tiling exists.

Make two configurations c0 and c1 whose Snakes and the T

layers form the same valid tilings of the plane. In c0 all bits

are 0, in c1 all bits are 1.

All cells are active because the tilings are correct. So all bits in

both configurations become 0, hence G(c0) = G(c1). The CA

is not injective.



(⇐=) Conversely, assume that the CA is not injective. Let c

and d be two different configurations with the same successor.

Since only bits may change, c and d must have identical

Snakes and T layers. So they must have different bits 0 and 1

in some position ~p1 ∈ Z
2.
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(⇐=) Conversely, assume that the CA is not injective. Let c

and d be two different configurations with the same successor.

Since only bits may change, c and d must have identical

Snakes and T layers. So they must have different bits 0 and 1

in some position ~p1 ∈ Z
2.

Because c and d have identical successors:

• The cell in position ~p1 must be active, that is, the Snakes

and T tilings are both valid in position ~p1.

• The bits stored in the next position ~p2 (indicated by the

direction) are different in c and d.

Hence we can repeat the reasoning in position ~p2.



The same reasoning can be repeated over and over again. The

positions ~p1, ~p2, ~p3, . . . form a path that follows the arrows on

the tiles. There is no tiling error at any tile on this path so the

special property of Snakes forces the path to cover arbitrarily

large squares.

Hence T admits tilings of arbitrarily large squares, and

consequently a tiling of the infinite plane.



Theorem: It is undecidable whether a given two-dimensional

CA is injective.



Theorem: It is undecidable whether a given two-dimensional

CA is injective.

An analogous (but simpler!) construction can be made for the

surjectivity problem, based on the fact surjectivity is

equivalent to pre-injectivity:

Theorem: It is undecidable whether a given two-dimensional

CA is surjective.
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Both problems are semi-decidable in one direction:

Injectivity is semi-decidable: Enumerate all CA G one-by

one and check if G is the inverse of the given CA. Halt once (if

ever) the inverse is found.

Non-surjectivity is semi-decidable: Enumerate all finite

patterns one-by-one and halt once (if ever) an orphan is found.



Undecidability of injectivity implies the following:

There are some reversible CA that use von Neumann

neighborhood but whose inverse automata use a very large

neighborhood: There can be no computable upper bound on

the extend of this inverse neighborhood.



Undecidability of injectivity implies the following:

There are some reversible CA that use von Neumann

neighborhood but whose inverse automata use a very large

neighborhood: There can be no computable upper bound on

the extend of this inverse neighborhood.

Topological arguments =⇒ A finite neighborhood is

enough to determine the previous state of a cell.

Computation theory =⇒ This neighborhood may be

extremely large.



Undecidability of surjectivity implies the following:

There are non-surjective CA whose smallest orphan is very

large: There can be no computable upper bound on the extend

of the smallest orphan.



Undecidability of surjectivity implies the following:

There are non-surjective CA whose smallest orphan is very

large: There can be no computable upper bound on the extend

of the smallest orphan.

So while the smallest known orphan for Game-Of-Life is pretty

big (88 cells), this pales in comparison with some other CA.



The undecidability proofs for reversibility and surjectivity can

be merged into

Theorem: The classes of

• Reversible 2D CA

• Non-surjective 2D CA

are recursively inseparable

Non-
surjective
2D CA Reversible

2D CA



G injective         G bijective         G reversible

G surjective G pre-injective

XOR

P

PG   injective

G   surjective

XOR

Snake-XOR

?

UNDECIDABLE

UNDECIDABLE



G injective         G bijective         G reversible
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P
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Non-
surjective
2D CA Reversible

2D CA

Dense
periodic
orbits

Example: It is conjectured that all surjective CA have dense

periodic orbits. This is surely the case for all reversible CA,

but not the case for any non-surjective CA.

We have no idea on the solution of this long standing open

problem but, in any case, we know now that it is undecidable

if a given 2D CA has dense periodic orbits.
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