Substitution cut-and-project tilings with n-fold rotational symmetry

Victor Hubert Lutfalla

Turun yliopisto University of Turku

In their 2016 article, Jarkko Kari and Markus Rissanen define a explicit method to construct a substitution tiling with n-fold rotational symmetry for any n. In this talk I will only present the case of $2 k+1$-fold symmetry and first the 7 -fold symmetry.

So our first goal was to find a tiling which is:

- defined by a substitution
- cut-and-project
- invariant by rotation of angle $\frac{2 \pi}{7}$
(1) Substitution tilings
(2) Cut-and-project
(3) Dilatation matrix
(4) 7 -fold
- Details of a tiling
- Other tilings
(5) Methodology for odd rotational symmetry
(1) Substitution tilings
(3) Dilatation matrix
(4. 7-fold
- Details of a tiling
- Other tilings
(5) Methodology for odd rotational symmetry

We have two ways of defining tilings generated by a substitution:

- $\mathcal{T}=\lim _{n \rightarrow \infty} \sigma^{n}(T)$
- The infinitly desubstitutable tilings

A tiling is quasiperiodic when:

- it is not periodic
- it is uniformly recurrent

Definition (Uniform recurrence)

A tiling is uniformly recurrent when for every finite patern m that appears in the tiling, there exists a radius r_{m} so that for every vertex s of the tiling, the pattern m appears at distance $\leqslant r_{m}$ of s.
(1) Substitution tilings
(2) Cut-and-project

3 Dilatation matrix
(4. 7-fold

- Details of a tiling
- Other tilings
(5) Methodology for odd rotational symmetry

Cut $\mathcal{D}+\mathcal{H}$ in grey.
Discrete line \mathcal{D}_{d} :

- projection \mathcal{T} on \mathcal{D}
- projection Ω on \mathcal{D}^{\perp}.

Setting:

- \mathbb{R}^{n}
- $\mathcal{L}=\mathbb{Z}^{n}$
- \mathcal{E} irrational plane
- \mathcal{W} and \mathcal{R} orthogonal complementary spaces

Cut $\mathcal{E}+\mathcal{H}$ where \mathcal{H} is a compact set with non empty interior.
Discrete plane $\mathcal{E}_{d}=\mathcal{L} \cap(\mathcal{E}+\mathcal{H})$
Projection $\mathcal{T}=\Pi_{\mathcal{E}}\left(\mathcal{E}_{d}\right)$ and window $\Omega=\Pi_{\mathcal{W} \oplus \mathcal{R}}\left(\mathcal{E}_{d}\right)$.

\mathcal{E} is generated by $\left(\cos \left(\frac{2 k \pi}{7}\right)\right)_{k=0 . .6}=\left(\begin{array}{c}1 \\ \cos \left(\frac{2 \pi}{7}\right) \\ \cos \left(\frac{4 \pi}{7}\right) \\ \cos \left(\frac{6 \pi}{7}\right) \\ \cos \left(\frac{8 \pi}{7}\right) \\ \cos \left(\frac{10 \pi}{7}\right) \\ \cos \left(\frac{12 \pi}{7}\right)\end{array}\right)$ and $\left(\sin \left(\frac{2 k \pi}{7}\right)\right)_{k=0 . .6}=\left(\begin{array}{c}0 \\ \sin \left(\frac{2 \pi}{7}\right) \\ \sin \left(\frac{4 \pi}{7}\right) \\ \sin \left(\frac{6 \pi}{7}\right) \\ \sin \left(\frac{8 \pi}{7}\right) \\ \sin \left(\frac{10 \pi}{7}\right) \\ \sin \left(\frac{12 \pi}{7}\right)\end{array}\right)$

Figure: Projection of the canonical basis \mathbb{R}^{7}

Irrational subspace $W: W=\mathcal{E}^{\prime} \oplus \mathcal{E}^{\prime \prime}$ where

- \mathcal{E}^{\prime} is generated by $\left(\cos \left(\frac{4 k \pi}{7}\right)\right)_{k=0 . .6}$ and $\left(\sin \left(\frac{4 k \pi}{7}\right)\right)_{k=0 . .6}$
- $\mathcal{E}^{\prime \prime}$ is generated by $\left(\cos \left(\frac{6 k \pi}{7}\right)\right)_{k=0 . .6}$ and $\left(\sin \left(\frac{6 k \pi}{7}\right)\right)_{k=0 . .6}$

Rational subspace $R: R=\Delta$ line generated by the vector $(1)_{k=0 . .6}$

$$
\mathbb{R}^{7}=\mathcal{E} \oplus^{\perp} \mathcal{E}^{\prime} \oplus^{\perp} \mathcal{E}^{\prime \prime} \oplus^{\perp} \Delta
$$

Projections

Projection over $\mathcal{E}, \mathcal{E}^{\prime}$ and $\mathcal{E}^{\prime \prime}$ of a small set

(3) Dilatation matrix
(4. 7-fold

- Details of a tiling
- Other tilings
(5) Methodology for odd rotational symmetry

$\xrightarrow{\text { substitution }}$

With $a=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right), b=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$ and $c=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$.

$$
M=\left(\begin{array}{ccc}
4 & -1 & -1 \\
-1 & 4 & -1 \\
-1 & -1 & 4
\end{array}\right)
$$

We have $\varphi(a)=M \cdot a \ldots$ so φ is described by M.
The study of M leads to a good understanding of the dilatation and substitution "in \mathbb{R}^{3} ".

With the setting $\mathbb{R}^{n}=\mathcal{E} \oplus W \oplus R$ we need:

- \mathcal{E}, W, R are eigenspaces
- $\left|\lambda_{\mathcal{E}}\right|>1$
- $\left|\lambda_{W}\right|,\left|\lambda_{R}\right| \leqslant 1$
(3) Dilatation matrix
(4) 7-fold
- Details of a tiling - Other tilings
(5) Methodology for odd rotational symmetry

We found

$$
C=\left(\begin{array}{ccccccc}
5 & 4 & 0 & -4 & -5 & -2 & 2 \\
2 & 5 & 4 & 0 & -4 & -5 & -2 \\
-2 & 2 & 5 & 4 & 0 & -4 & -5 \\
-5 & -2 & 2 & 5 & 4 & 0 & -4 \\
-4 & -5 & -2 & 2 & 5 & 4 & 0 \\
0 & -4 & -5 & -2 & 2 & 5 & 4 \\
4 & 0 & -4 & -5 & -2 & 2 & 5
\end{array}\right)
$$

Which has eigenspaces $\mathcal{E}, \mathcal{E}^{\prime}, \mathcal{E}^{\prime \prime}$ and Δ with eigensvalues

$$
|\lambda| \approx 17.7394,\left|\lambda^{\prime}\right| \approx 0.4475,\left|\lambda^{\prime \prime}\right| \approx 0.3332 \text { and } \lambda_{\Delta}=0
$$

This matrix only defines the edge of the substitution

Tiling the metarhombi

Criterion and tiling algorithm in Kenyon93.

Figure: Complete substitution σ over \mathcal{E}

Projections over $\mathcal{E}^{\prime}, \mathcal{E}^{\prime \prime}$

Main result

Theorem (Main result)

The substitution σ defines a set $\mathcal{E}_{d}=\lim _{n \rightarrow \infty} \sigma^{n}\left(R_{2}^{1}\right)$ that satisfies:

- $\mathcal{T}=\Pi_{\mathcal{E}}\left(\mathcal{E}_{d}\right)$ is a rhombus tiling with invariance by rotation of angle $\frac{2 \pi}{7}$
- the closure of $\Omega=\Pi_{\mathcal{W} \oplus \mathcal{R}}\left(\mathcal{E}_{d}\right)$ is compact and has a non-empty interior $\Rightarrow \mathcal{E}_{d}$ is a cut-and-project set.

$$
\left(\begin{array}{ccccccc}
4 & 3 & 0 & -3 & -4 & -2 & 2 \\
2 & 4 & 3 & 0 & -3 & -4 & -2 \\
-2 & 2 & 4 & 3 & 0 & -3 & -4 \\
-4 & -2 & 2 & 4 & 3 & 0 & -3 \\
-3 & -4 & -2 & 2 & 4 & 3 & 0 \\
0 & -3 & -4 & -2 & 2 & 4 & 3 \\
3 & 0 & -3 & -4 & -2 & 2 & 4
\end{array}\right)
$$

$$
\left(\begin{array}{ccccccc}
10 & 6 & -2 & -9 & -9 & -2 & 6 \\
6 & 10 & 6 & -2 & -9 & -9 & -2 \\
-2 & 6 & 10 & 6 & -2 & -9 & -9 \\
-9 & -2 & 6 & 10 & 6 & -2 & -9 \\
-9 & -9 & -2 & 6 & 10 & 6 & -2 \\
-2 & -9 & -9 & -2 & 6 & 10 & 6 \\
6 & -2 & -9 & -9 & -2 & 6 & 10
\end{array}\right)
$$

3 Dilatation matrix
(4. 7-fold

- Details of a tiling
- Other tilings
(5) Methodology for odd rotational symmetry

Cut-and-project setting

The ambiant space is \mathbb{R}^{n} with $n=2 k+1$.
We have $\mathbb{R}^{n}=\Delta \bigoplus_{i=0 . . k-1} \mathcal{E}_{i}$ where

- \mathcal{E}_{i} is the space generated by the vectors $\left(\cos \left(\frac{2(i+1) j \pi}{n}\right)\right)_{j=0 . . n-1},\left(\sin \left(\frac{2(i+1) j \pi}{n}\right)\right)_{j=0 . . n-1}$.
- Δ is the line generated by $(1)_{j=0 . . n-1}$
\mathcal{E}_{0} is the tiling plane.

Tiles

We have k rhombus tiles $r_{0} \ldots r_{k-1}$

The rhombi r_{i} has angles $\frac{(2 i+1) \pi}{n}$ and $\frac{2(k-i) \pi}{n}$.
So r_{0} has narrow angle $\frac{\pi}{n}$ and wide angle $\frac{2 k \pi}{n}=\frac{(n-1) \pi}{n}$.
The edges of a substitution will be a sequence of such rhombi $w_{1} r_{1}+w_{2} r_{2}+\cdots+w_{k} r_{k}$

Example :

Decomposition

For every rhombus r_{i} we define a dilatation φ_{i} associated to r_{i}.
The diagonal vector of r_{0} is $e_{0}-e_{k}$ so φ_{0} is defined by the matrix $\left(\begin{array}{cccc}1 & 0 & \ldots & 0 \\ 0 & 1 & & 0 \\ 0 & 0 & & 0 \\ 0 & 0 & & -1 \\ -1 & 0 & & 0 \\ 0 & -1 & & 0 \\ 0 & 0 & & 0 \\ 0 & 0 & & 0 \\ 0 & 0 & \ldots & 1\end{array}\right)$
φ_{i} has Δ, \mathcal{E}_{j} for eigenspaces with eigenvalues 0 and $\lambda_{(i, j)}=2 \cos \left(\frac{(2 i+1)(2 j+1) \pi}{2 n}\right)$.

$$
\varphi=\sum_{i=0 . . k-1} w_{i} \varphi_{i}
$$

Eigenvalues of φ

The edges of the substitution are defined by the vector $\left(\begin{array}{c}w_{0} \\ \vdots \\ w_{k-1}\end{array}\right)$
The dilatation is $\varphi=\sum_{i=0 . . k-1} w_{i} \varphi_{i}$
φ has Δ, \mathcal{E}_{j} for eigenspaces with eigenvalues 0 and $\lambda_{j}=\sum_{i=0 . . k-1} w_{i} \lambda_{(i, j)}$

$$
\begin{gathered}
\text { So we have }\left(\begin{array}{c}
\lambda_{0} \\
\vdots \\
\lambda_{k-1}
\end{array}\right)=\left(\begin{array}{ccc}
\lambda_{(0,0)} & \cdots & \lambda_{(k-1,0)} \\
\vdots & \ddots & \vdots \\
\lambda_{(0, k-1)} & \cdots & \lambda_{(k-1, k-1)}
\end{array}\right) \cdot\left(\begin{array}{c}
w_{0} \\
\vdots \\
w_{k-1}
\end{array}\right) \\
\text { With } \lambda_{(i, j)}=2 \cos \left(\frac{(2 i+1)(2 j+1) \pi}{2 n}\right)
\end{gathered}
$$

- $\left|\lambda_{0}\right|>1$ and the other $\left|\lambda_{j}\right|<1$

This makes the dilatation admissible for cut-and-project

- the meta-tiles are tilable over \mathcal{E}_{0}

This makes it an actual substitution of the plane

(1) The 7 -fold case is quite well known now

- We have 2 explicit substitution 7-fold cut-and-project tilings
- We have a caracterisation of these tilings
(2) We designed the methodology for arbitrary dimension n
- For any dimension we can easily have the existence of admissble substitution matrices
- The only thing missing is tilability of such dilated-tiles

So now we need to find a sequence $\left(\left(\begin{array}{c}w_{0} \\ \vdots \\ w_{k-1}\end{array}\right)\right)_{k \in \mathbb{N}}$ such that for all k it defines a substitution $(2 k+1)$-fold cut-and-project tiling.

		0 Poxy	8
:---:			
8			
$\frac{8}{8}$			
$\frac{8}{2}$			
$\frac{8}{1}$			

Let $n \in \mathbb{N}$. Let \mathbb{R}^{n} with the canonical basis $\left(e_{1}, \ldots, e_{n}\right)$, the set of canonical vectors $S=\left\{ \pm e_{1}, \ldots, \pm e_{n}\right\}$ and a subspace W. We define Π_{W} as the orthogonal projection on W.

Definition

We define the property linked over the sets by
linked $(X) \Leftrightarrow\left(\forall x, y \in X, \exists k, x_{0} \ldots x_{k},\left\{\begin{array}{l}x_{0}=x \\ x_{k}=y \\ \forall 0 \leqslant i<1, \exists \varepsilon \in S=\left\{ \pm e_{1}, \ldots, \pm e_{n}\right\}, x_{i+1}=x_{i}+\varepsilon\end{array}\right)\right.$
We call unit square a set X such that
$\exists x \in \mathbb{R}^{n}, \exists e, e^{\prime} \in S$ with $e \neq-e^{\prime}, X=\left\{x, x+e, x+e^{\prime}, x+e+e^{\prime}\right\}$.
Given a set Y, a family $\left(X_{i}\right)_{i \in I}$ of unit square is called a total covering by unit squares of Y when $\left\{\begin{array}{l}\forall x \in Y, \exists i \in I, x \in X_{i} \\ \forall \text { unit square } X \subseteq Y, \exists i \in I, X=X_{i}\end{array}\right.$ such a covering is called exact when $\forall i \in I, \forall x \in X_{i}, x \in Y$.

Let φ a function $\mathbb{Z}^{n} \rightarrow \mathbb{Z} n, \sigma$ a function $\mathcal{P}\left(\mathbb{Z}^{n}\right) \rightarrow \mathcal{P}\left(\mathbb{Z}^{n}\right)$ and R_{0} a finite linked set such that
(1) σ is the substitution associated to dilatation φ :

- $\forall x, \sigma(\{x\})=\{\varphi(x)\}$,
- $\forall X \subseteq Y, \sigma(X) \subseteq \sigma(Y)$
- $\forall X$, linked $(X) \Rightarrow$ linked $(\sigma(X))$
- $\exists D \in \mathbb{R}^{+}$, for any unit square $X, \sigma(X)$ has a diametre $\leqslant D$ ie: $\forall x, y \in \sigma(X), d(x, y) \leqslant D$
- $\forall Y$, for any total covering by unit squares X_{1}, \ldots, X_{p} of Y, the image $\sigma(Y)$ is the union of the images of the $X_{i}: \sigma(Y) \subseteq \bigcup_{i=1 \ldots p} \sigma\left(X_{i}\right)$ and furthermore if the covering is exact $\sigma(Y)=\bigcup_{i=1 \ldots p} \sigma\left(X_{i}\right)$
(2) φ is contracting on $W: \exists \lambda<1, \forall x \in \mathbb{Z}^{n},\left\|\Pi_{W}(\varphi(x))\right\| \leqslant \lambda\left\|\Pi_{W}(x)\right\|$
(3) $R_{0} \subseteq \sigma\left(R_{0}\right)$

We have the following:
(1) $R_{\infty}^{W}=\lim _{i \rightarrow \infty} \Pi_{W}\left(\sigma^{i}\left(R_{0}\right)\right)$ exists
(2) $\exists M \in \mathbb{R}^{+}, \forall x, y \in R_{\infty}^{W},\|x-y\| \leqslant M$
(3) $0 \in R_{\infty}^{\bar{W}}$

