# Substitution cut-and-project tilings with n-fold rotational symmetry

Victor Hubert  $\operatorname{Lutfalla}$ 





Turun yliopisto University of Turku

2017







Goal

In their 2016 article, Jarkko KARI and Markus RISSANEN define a explicit method to construct a substitution tiling with *n*-fold rotational symmetry for any *n*. In this talk I will only present the case of 2k + 1-fold symmetry and first the 7-fold symmetry.

So our first goal was to find a tiling which is:

- defined by a substitution
- cut-and-project
- invariant by rotation of angle  $\frac{2\pi}{7}$

# Substitution tilings

2 Cut-and-project

Oilatation matrix

- 4 7-fold
  - Details of a tiling
  - Other tilings

Methodology for odd rotational symmetry

# Substitution tilings

- 2 Cut-and-project
- Oilatation matrix
- 7-fold
  - Details of a tiling
  - Other tilings
- Methodology for odd rotational symmetry







Tilings

Substitution tilings

We have two ways of defining tilings generated by a substitution:

- $\mathcal{T} = \lim_{n \to \infty} \sigma^n(T)$
- The infinitly desubstitutable tilings





A tiling is *quasiperiodic* when:

- it is not periodic
- it is uniformly recurrent

### Definition (Uniform recurrence)

A tiling is uniformly recurrent when for every finite patern m that appears in the tiling, there exists a radius  $r_m$  so that for every vertex s of the tiling, the pattern m appears at distance  $\leq r_m$  of s.





3 Dilatation matrix

- 7-fold
  - Details of a tiling
  - Other tilings

Methodology for odd rotational symmetry



 $\begin{array}{l} \mathsf{Cut}\ \mathcal{D} + \mathcal{H} \ \text{in grey.} \\ \mathsf{Discrete}\ \mathsf{line}\ \mathcal{D}_d \ : \end{array}$ 

- $\bullet$  projection  ${\mathcal T}$  on  ${\mathcal D}$
- projection  $\Omega$  on  $\mathcal{D}^{\perp}$ .

50 50 50 50 60 60 60 60



Setting:

- **R**<sup>n</sup>
- $\mathcal{L} = \mathbb{Z}^n$
- $\mathcal{E}$  irrational plane
- $\bullet \ \mathcal{W} \mbox{ and } \mathcal{R} \mbox{ orthogonal complementary spaces }$

Cut  $\mathcal{E}+\mathcal{H}$  where  $\mathcal{H}$  is a compact set with non empty interior.

Discrete plane  $\mathcal{E}_d = \mathcal{L} \cap (\mathcal{E} + \mathcal{H})$ Projection  $\mathcal{T} = \Pi_{\mathcal{E}}(\mathcal{E}_d)$  and window  $\Omega = \Pi_{\mathcal{W} \oplus \mathcal{R}}(\mathcal{E}_d)$ .

$$\mathcal{E} \text{ is generated by } (\cos(\frac{2k\pi}{7}))_{k=0..6} = \begin{pmatrix} 1\\ \cos\left(\frac{2\pi}{7}\right)\\ \cos\left(\frac{4\pi}{7}\right)\\ \cos\left(\frac{8\pi}{7}\right)\\ \cos\left(\frac{8\pi}{7}\right)\\ \cos\left(\frac{10\pi}{7}\right)\\ \cos\left(\frac{12\pi}{7}\right) \end{pmatrix} \text{ and } (\sin(\frac{2k\pi}{7}))_{k=0..6} = \begin{pmatrix} 0\\ \sin\left(\frac{2\pi}{7}\right)\\ \sin\left(\frac{4\pi}{7}\right)\\ \sin\left(\frac{8\pi}{7}\right)\\ \sin\left(\frac{8\pi}{7}\right)\\ \sin\left(\frac{10\pi}{7}\right)\\ \sin\left(\frac{10\pi}{7}\right) \end{pmatrix}$$



Figure: Projection of the canonical basis  $\mathbb{R}^7$ 

Irrational subspace W:  $W = \mathcal{E}' \oplus \mathcal{E}''$  where

- $\mathcal{E}'$  is generated by  $(\cos(\frac{4k\pi}{7}))_{k=0..6}$  and  $(\sin(\frac{4k\pi}{7}))_{k=0..6}$ •  $\mathcal{E}''$  is generated by  $(\cos(\frac{6k\pi}{7}))_{k=0..6}$  and  $(\sin(\frac{6k\pi}{7}))_{k=0..6}$
- Rational subspace R:  $R = \Delta$  line generated by the vector  $(1)_{k=0..6}$

$$\mathbb{R}^7 = \mathcal{E} \oplus^{\perp} \mathcal{E}' \oplus^{\perp} \mathcal{E}'' \oplus^{\perp} \Delta$$

# Projections



Projection over  $\mathcal{E}, \mathcal{E}'$  and  $\mathcal{E}''$  of a small set



# Substitution tilings

2 Cut-and-project

# Oilatation matrix

- 7-fold
  - Details of a tiling
  - Other tilings

Methodology for odd rotational symmetry



We have  $\varphi(a) = M \cdot a \dots$  so  $\varphi$  is described by M. The study of M leads to a good understanding of the dilatation and substitution "in  $\mathbb{R}^{3}$ ".



With the setting  $\mathbb{R}^n = \mathcal{E} \oplus W \oplus R$  we need:

- $\mathcal{E}, W, R$  are eigenspaces
- $|\lambda_{\mathcal{E}}| > 1$
- $|\lambda_W|, |\lambda_R| \leqslant 1$

## Substitution tilings

2 Cut-and-project

Oilatation matrix

## 4 7-fold

- Details of a tiling
- Other tilings

Methodology for odd rotational symmetry

Details of a tiling

We found

$$C = \begin{pmatrix} 5 & 4 & 0 & -4 & -5 & -2 & 2 \\ 2 & 5 & 4 & 0 & -4 & -5 & -2 \\ -2 & 2 & 5 & 4 & 0 & -4 & -5 \\ -5 & -2 & 2 & 5 & 4 & 0 & -4 \\ -4 & -5 & -2 & 2 & 5 & 4 & 0 \\ 0 & -4 & -5 & -2 & 2 & 5 & 4 \\ 4 & 0 & -4 & -5 & -2 & 2 & 5 \end{pmatrix}$$

Which has eigenspaces  $\mathcal{E}, \mathcal{E}', \mathcal{E}''$  and  $\Delta$  with eigensvalues

 $|\lambda| pprox 17.7394, \; |\lambda'| pprox 0.4475, \; |\lambda''| pprox 0.3332$  and  $\lambda_\Delta = 0$ 

This matrix only defines the edge of the substitution



7-fold D

Details of a tiling

# Tiling the metarhombi



## Criterion and tiling algorithm in KENYON93.





Figure: Complete substitution  $\sigma$  over  $\mathcal{E}$ 

### 7-fold

#### Details of a tiling

# Projections over $\mathcal{E}', \mathcal{E}''$



# Main result

### Theorem (Main result)



The substitution  $\sigma$  defines a set  $\mathcal{E}_d = \lim_{n \to \infty} \sigma^n(R_2^1)$  that satisfies:

- $\mathcal{T} = \Pi_{\mathcal{E}}(\mathcal{E}_d)$  is a rhombus tiling with invariance by rotation of angle  $\frac{2\pi}{7}$
- the closure of Ω = Π<sub>W⊕R</sub>(E<sub>d</sub>) is compact and has a non-empty interior ⇒ E<sub>d</sub> is a cut-and-project set.

7-fold Other tilings

 $\begin{pmatrix} 4 & 3 & 0 & -3 & -4 & -2 & 2 \\ 2 & 4 & 3 & 0 & -3 & -4 & -2 \\ -2 & 2 & 4 & 3 & 0 & -3 & -4 \\ -4 & -2 & 2 & 4 & 3 & 0 & -3 \\ -3 & -4 & -2 & 2 & 4 & 3 & 0 \\ 0 & -3 & -4 & -2 & 2 & 4 & 3 \\ 3 & 0 & -3 & -4 & -2 & 2 & 4 \end{pmatrix}$ 



7-fold Other

Other tilings



Substitution tilings

Out-and-project

3 Dilatation matrix

- 7-fold
  - Details of a tiling
  - Other tilings



# Cut-and-project setting

The ambiant space is  $\mathbb{R}^n$  with n = 2k + 1.

We have  $\mathbb{R}^n = \Delta \displaystyle{\bigoplus_{i=0..k-1}} \mathcal{E}_i$  where

- $\mathcal{E}_i$  is the space generated by the vectors  $\left(\cos\left(\frac{2(i+1)j\pi}{n}\right)\right)_{j=0..n-1}, \ \left(\sin\left(\frac{2(i+1)j\pi}{n}\right)\right)_{j=0..n-1}$ .
- Δ is the line generated by (1)<sub>j=0..n-1</sub>

 $\mathcal{E}_0$  is the tiling plane.

# Tiles

We have k rhombus tiles  $r_0 \ldots r_{k-1}$ The rhombi  $r_i$  has angles  $\frac{(2i+1)\pi}{n}$  and  $\frac{2(k-i)\pi}{n}$ . So  $r_0$  has narrow angle  $\frac{\pi}{n}$  and wide angle  $\frac{2k\pi}{n} = \frac{(n-1)\pi}{n}$ . The edges of a substitution will be a sequence of such rhombi  $w_1r_1 + w_2r_2 + \cdots + w_kr_k$ 

Example :

# Decomposition

 $\varphi_i$  has  $\Delta, \mathcal{E}_j$  for eigenspaces with eigenvalues 0 and  $\lambda_{(i,j)} = 2 \cos \left( \frac{(2i+1)(2j+1)\pi}{2n} \right)$ .

$$\varphi = \sum_{i=0..k-1} w_i \varphi_i$$

# Eigenvalues of $\varphi$

The edges of the substitution are defined by the vector

$$\begin{pmatrix} w_0 \\ \vdots \\ w_{k-1} \end{pmatrix}$$

/ .... \

The dilatation is  $\varphi = \sum_{i=0..k-1} w_i \varphi_i$ 

arphi has  $\Delta, \mathcal{E}_j$  for eigenspaces with eigenvalues 0 and  $\lambda_j = \sum_{i=0..k-1} w_i \lambda_{(i,j)}$ 

So we have 
$$\begin{pmatrix} \lambda_0 \\ \vdots \\ \lambda_{k-1} \end{pmatrix} = \begin{pmatrix} \lambda_{(0,0)} & \dots & \lambda_{(k-1,0)} \\ \vdots & \ddots & \vdots \\ \lambda_{(0,k-1)} & \dots & \lambda_{(k-1,k-1)} \end{pmatrix} \cdot \begin{pmatrix} w_0 \\ \vdots \\ w_{k-1} \end{pmatrix}$$

With 
$$\lambda_{(i,j)} = 2\cos\left(rac{(2i+1)(2j+1)\pi}{2n}
ight)$$



#### Conclusion

### The 7-fold case is quite well known now

- We have 2 explicit substitution 7-fold cut-and-project tilings
- We have a caracterisation of these tilings
- **2** We designed the methodology for arbitrary dimension n
  - . For any dimension we can easily have the existence of admissble substitution matrices
  - The only thing missing is tilability of such dilated-tiles

So now we need to find a sequence 
$$\begin{pmatrix} w_0 \\ \vdots \\ w_{k-1} \end{pmatrix}_{k \in \mathbb{N}}$$

such that for all k it defines a

substitution (2k + 1)-fold cut-and-project tiling.





2 2

-6 -2

 $^{-6}$ 

-4

0

4

6

0

4 6 2 Let  $n \in \mathbb{N}$ . Let  $\mathbb{R}^n$  with the canonical basis  $(e_1, \ldots, e_n)$ , the set of canonical vectors  $S = \{\pm e_1, \ldots, \pm e_n\}$  and a subspace W. We define  $\Pi_W$  as the orthogonal projection on W.

### Definition

We define the property linked over the sets by

$$\mathsf{linked}(X) \Leftrightarrow \left( \forall x, y \in X, \exists k, x_0 \dots x_k, \begin{cases} x_0 = x \\ x_k = y \\ \forall 0 \leqslant i < 1, \exists \varepsilon \in S = \{\pm e_1, \dots, \pm e_n\}, x_{i+1} = x_i + \varepsilon \end{cases} \right)$$

We call unit square a set X such that  $\exists x \in \mathbb{R}^n, \exists e, e' \in S \text{ with } e \neq -e', X = \{x, x + e, x + e', x + e + e'\}.$ Given a set Y, a family  $(X_i)_{i \in I}$  of unit square is called a total covering by unit squares of Y when  $\begin{cases} \forall x \in Y, \exists i \in I, x \in X_i \\ \forall unit square X \subseteq Y, \exists i \in I, X = X_i \end{cases}$ such a covering is called *exact* when  $\forall i \in I, \forall x \in X_i, x \in Y.$ 

### Lemma

Let  $\varphi$  a function  $\mathbb{Z}^n \to \mathbb{Z}n$ ,  $\sigma$  a function  $\mathcal{P}(\mathbb{Z}^n) \to \mathcal{P}(\mathbb{Z}^n)$  and  $R_0$  a finite linked set such that

**(**)  $\sigma$  is the substitution associated to dilatation  $\varphi$ :

- $\forall x, \sigma(\{x\}) = \{\varphi(x)\},\$
- $\forall X \subseteq Y, \ \sigma(X) \subseteq \sigma(Y)$
- $\forall X$ , linked(X)  $\Rightarrow$  linked( $\sigma(X)$ )
- $\exists D \in \mathbb{R}^+$ , for any unit square X,  $\sigma(X)$  has a diametre  $\leqslant D$  ie:  $\forall x, y \in \sigma(X), \ d(x, y) \leqslant D$
- $\forall Y$ , for any total covering by unit squares  $X_1, \ldots, X_p$  of Y, the image  $\sigma(Y)$  is the union of the images of the  $X_i$ :  $\sigma(Y) \subseteq \bigcup_{i=1...p} \sigma(X_i)$  and furthermore if the covering is exact  $\sigma(Y) = \bigcup_{i=1...p} \sigma(X_i)$
- **②** *φ* is contracting on *W*:  $\exists \lambda < 1$ ,  $\forall x \in \mathbb{Z}^n$ ,  $||\Pi_W(φ(x))|| ≤ \lambda ||\Pi_W(x)||$

$$R_0 \subseteq \sigma(R_0)$$

We have the following:

• 
$$R_{\infty}^{W} = \lim_{i \to \infty} \prod_{W} (\sigma^{i}(R_{0})) \text{ exists}$$
  
•  $\exists M \in \mathbb{R}^{+}, \forall x, y \in R_{\infty}^{W}, ||x - y|| \leq M$   
•  $0 \in R_{\infty}^{\overline{W}}$ 





