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Introduction.

• Let D ⊂ Rd be an aperiodic Delone set and (XD,Rd, µ) be
its associated dynamical system with µ an ergodic
measure. In that follows, we denote XD0 the canonical
transversal and the groupoid associated by

GRd := {(x, t) ∈ XD0 ×R
d/x − t ∈ XD0}.

• When D is repetitive, XD0 is a Cantor set and (XD,Rd, µ) is
minimal.

• α ∈ Rd is an eigenvalue for (XD,Rd, µ) if exists f ∈ L2(XD, µ)
such that for µ-almost every x ∈ XD and all t ∈ Rd is verifies

f (x − t) = e2πi〈α,t〉 f (x).

If f is continuous, then we say that α is a continuous
eigenvalue.
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Motivation.

• The set D is called Meyer when D−D is also a Delone set.

• In 2014 J.Kellendonk and L.Sadun proved the following
result.

Theorem
In Rd, a repetitive Delone set of finite local complexity has d
linearly independent continuous eigenvalues if and only if it is
topologically conjugate to a Meyer set.

• In particular, each repetitive Meyer set has d linearly
independent continuous eigenvalues.

• We are interested in to find some condition to ensure that
all eigenvalues are continuous. Before that, we give a
dynamical proof of the fact that a Meyer set has d linearly
independent continuous eigenvalues.
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Preliminaries.

• If D is repetitive and ~0 ∈ D, then the abelian group [D] is
finitely generated.

• When the number of generators is s ≥ d we say that the
rank of D is s and we write rank(D) = s.

• Fix a basis {v1, . . . , vs} ⊂ Rd of [D], i.e. [D] = Z[v1, . . . , vs].
The address map of D is φD : [D]→ Zs defined for

t =

s∑
i=1

nivi by φD(t) = (n1, . . . ,ns).

• If in addition, D is Meyer then there exists a linear map
LD : Rd

→ Rs and a constant ξD > 0 that verifies for all
t ∈ [D],

‖φD(t) − LD(t)‖s ≤ ξD.
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Preliminaries.

• If D is repetitive then for all x ∈ XD0 we have [x] = [D].

• Its possible to define the maps Φ,L : GRd → Rs by

Φ(x, t) = φx(t) and L(x, t) = Lx(t).

• The map L is independent in his first coordinate, i.e. for all
(x, t), (y, t) ∈ GRd we have

Lx(t) = Ly(t).

• The map Φ − L : GRd → Rs is a continuous cocycle.
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Result in any dimension.

• If we call A ∈Ms×d(R) the matrix, in canonical basis,
associated to the linear transformation L, then we have the
following result.

Theorem (A)

Let D ⊂ Rd be a repetitive Meyer set with rank(D) = s. The
dynamical system (XD,Rd) has s ≥ d continuous eigenvalues
given by the rows of A.

• Sketch of proof: For all x ∈ XD0 consider the fiber

GRd,x := {t ∈ Rd : (x, t) ∈ GRd}.

For all x ∈ XD0 , the set (Φ − L)(GRd,x) is relatively compact.
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• Using an extension of the Gottschalk-Hedlund’s theorem
for groupoids given by J.Renault , exists a continuous
function F : XD0 → R

s such that

Φ(x, t) − L(x, t) = F ◦ r(x, t) − F ◦ d(x, t).

• taking exponential in each coordinate, on both sides of the
last equality and considering that Φ(x, t) = φx(t) ∈ Zs,

exp(2πi Fi(x − t)) = exp(−2πi 〈Ai,·, t〉) exp(2πi Fi(x)),

where Fi is the projection in the i-coordinate for F.
• So, we can extend the map f (x) = exp(2πi Fi(x)) to whole

the hull for obtain an eigenfunction for the eigenvalue −Ai,·.
• We conclude that for all i ∈ {1, . . . , s}, the vector −Ai,· is a

continuous eigenvalue for (XD,Rd).
�
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Results in one dimension.
• Consider a primitive and recognizable fusion rule

F = {Fn( j)/1 ≤ j ≤ Jn}n∈N

with associated matrices {M(n)}n∈N. Denote

P(n) = M(n)M(n − 1) · · ·M(1) and H(n) = (hn(l) : 1 ≤ l ≤ Jn)t.

• We can used this to construct a sequence of KR-partition
satisfying some technical conditions. Following some ideas
from [CDHM] we can prove

Proposition
Let F be a linearly recurrent, strongly primitive, recognizable
fusion rule with FLC. Consider µ being the unique ergodic
measure for (XF ,R). If α ∈ R is an eigenvalue of (XF ,R, µ),
then

lim
n→∞

max
1≤k≤Jn

∣∣∣e2πiα·hn(k)
− 1

∣∣∣2 = 0.
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• For every linearly repetitive Meyer set we can associate a
fusion rule that is linearly recurrent and strongly primitive.
Using this we obtain the following result.

Theorem (B)
Consider D ⊂ R a linearly repetitive Meyer set such that the
associated fusion rule is recognizable. Suppose that for all
m ≥ 1 the heights hm(1), . . . , hm(Jm) are rationally independent.
Then (XD,R) has only continuous eigenvalues.

• Sketch of proof: Using the previous proposition if α is an
eigenvalue, then exist m̃ ∈N and a family of integers
(w j)1≤ j≤Jm̃ such that

α =

Jm̃∑
j=1

w j µ0(CFm̃( j)).

Where CFn( j) is the set of all tilings in XD0 such that the
origin is positioned at the control point of the n-tile Fn( j).
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• Consider a sequence {An}n∈N ⊂ XD0 defined by An := CFn(1)
clearly

· · · ⊂ An ⊂ · · · ⊂ A2 ⊂ A1.

• Since D is a repetitive and Meyer set, the sets
Dn = {t ∈ R/D − t ∈ An} are also repetitive and Meyer sets
and verifies

· · · ⊂ Dn ⊂ · · · ⊂ D2 ⊂ D1 ⊂ D.

• So, for all n > m̃ and every 1 ≤ j ≤ Jn exist
t1, j, t2, j ∈ Dn ⊂ Dm̃ with t1, j > t2, j such that hn( j) = t1, j − t2, j
and therefore

φDm̃−t2, j(hn( j)) = [P j,·(n, m̃)]t.

• For this reason, for all n > m̃ and every 1 ≤ j ≤ Jn we have∣∣∣∣∣∣∣∣∣∣ 1
hn( j)

[P j,·(n,m0)]t
− LDm0

(1)
∣∣∣∣∣∣∣∣∣∣

s
≤

ξDm0

hn( j)
.
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• If we denote µ(m̃) =


µ0(CFm̃(1))

...
µ0(CFJm̃ (Jm̃))

 , where µ0 is the

transversal measure, we have

‖LDm̃(1)−µ(m̃)‖s ≤

∣∣∣∣∣∣
∣∣∣∣∣∣ [P j,·(n, m̃)]t

hn( j)
− LDm̃(1)

∣∣∣∣∣∣
∣∣∣∣∣∣
s
+

∣∣∣∣∣∣
∣∣∣∣∣∣ [P j,·(n, m̃)]t

hn( j)
− µ(m̃)

∣∣∣∣∣∣
∣∣∣∣∣∣
s
.

• Taking n→∞, we have LDm̃(1) = µ(m̃) and by the theorem
(A), we conclude that for all 1 ≤ i ≤ Jm̃, α′ = µ0(CFm̃(i)) is a
continuous eigenvalue of (XDm̃ ,R).

• Since (XDm̃ ,R) is a factor of (XD,R) we conclude the result.
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Examples 1.

• A sequence s = (si)i∈Z ∈ {0, . . . ,m}Z is almost linear if
there exist a finite collection of real number {γa}

m
a=0 and

some constant C such that the partial sums

Si(a) :=


∑i−1

k=0 1{a}(sk) if i ≥ 1,
0 if i = 0,∑
−1
k=i 1{a}(sk) if i ≤ −1

satisfy for all i ∈ Z, max0≤a≤m|Si(a) − i sign(i) γa| ≤ C.

Theorem (Lagarias, 1999.)

If s = (si)i∈Z ∈ {0, . . . ,m}Z is an almost linear sequence, then for
all finite collection of rationally independent positive numbers
α0, . . . , αm the Delone set Dα0,...,αm(s) is Meyer.
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• As a consequence of theorem (B), we have.

Theorem
Let s = (si)i∈Z ∈ {0, . . . ,m}Z be a symbol sequence that is almost
linear and such that (XDα0 ,...,αm (s),R) is linearly recurrent.
Suppose that the associated fusion rule is recognizable and for
all n ≥ 1 the heights h1(n), . . . , hc(n)(n) are rationally
independent, then the transversal system (XDα0 ,...,αm (s),R) has
only continuous eigenvalues.

• Also, using theorem (A), we can observe that for all
1 ≤ k ≤ m the real numbers

β0 =
mγ1 − 1

mγ1(α0 − α1) − α0
and βk =

mγk

mγk(αk − α0) + α0
,

are continuous eigenvalue of (XDα0 ,...,αm (s),R).
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Example 2.
• Define the substitutions σA, σB : {1, 2} → {1, 2}? by

σA :
{
σA(1) = 2211111
σA(2) = 22211 and σB :

{
σB(1) = 211
σB(2) = 21.

• Consider the sequence (vn)n∈N ⊂ R inductively by v1 = 1
and

vn+1 =

{
βAvn ; if nvn ≤ 1
βBvn ; if nvn > 1.

• Define a fusion rule with tiles of level n defined by the
substitutions σ1 = I and σn+1 = σn ◦ σM(n), where

M(n + 1) =

{
A ; if nvn ≤ 1
B ; if nvn > 1.

• This fusion rules allows us construct a sequence η ∈ {1, 2}Z

that is not almost linear.
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Associating lenghts to tile the real line we obtain

• If the vector of initial lenghts are H(1) =

(
1
φ

)
, the

dynamical system (Xη,R) has only to 0 as a continuous
eigenvalue and the set of eigenvalues is given by

E =

{
e2πiα

∈ C; α =

(
1
2
,
φ − 1

2

)
· A−lw, l ≥ 0, w ∈ Z2

}
.
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dynamical system (Xη,R) has eigenvalues given by

E = Z∪
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e2πiα

∈ C; α =

(
2φ − 1

5
,

3 − φ
5

)
· A−lw, l ≥ 0, w ∈ Z2

}
.

Where the only continuous eigenvalues are α ∈ Z.
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